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ABSTRACT

Recent advances in technology have enabled the acquisition 
of high-resolution topographic data by means of Airborne 
Laser Swath Mapping (ALSM), which can yield Digital 
Elevation Models (DEMs) with horizontal resolutions of 1m. 
A DEM is a grayscale image wherein pixel value 
corresponds to elevation. Using ALSM imaging systems 
over forested terrain, we filter out the laser returns from the 
occluding foliage and estimate bare-surface DEMs.  
Extracting stream networks from DEMs is important for 
modeling many hydrological processes. We apply a 
sequence of morphological operations to an ALSM DEM to 
detect stream channels in forested terrain. We verify the 
accuracy of the results using a set of error measures over 
simulated terrain and also using GPS ground truth over real 
terrain.  For linking disconnected stream segments, a 
measure of pixel connectedness is used. 
 
Index Terms— Lidar, digital elevation models, stream 
delineation, morphology, connectivity number

1. INTRODUCTION 
 
The accurate delineation of streams is critical to the 
fundamental understanding of how water flows over terrain, 
as well as predicting flooding and the transport of pollution. 
Accurate representation of streams in a Digital Elevation 
Model (DEM), which is simply an image of topographic 
elevation, is a required step in simulating and predicting the 
effects of landscape processes, such as erosion, sediment 
transport and shallow landslides. The stream network 
extraction facilitates understanding about how rain water is 
partitioned into surface runoff and ground infiltration. In 
turn, it leads to better decision making and planning in 
water runoff management for sustainable development of 
water resources [1], [2].  

Airborne Laser Swath Mapping (ALSM) systems 
operate on the lidar, or light detection and ranging, principle.  
A pulsed laser emits narrow beams of light, while a local 
clock measures the elapsed time of flight until the reflected 

photon packet arrives back at the receiver.  By knowing 
precisely the scan angle and aircraft position and orientation, 
the 3D location of each reflection can be determined.  Laser 
pulse rates of 20 – 50 kHz and side-to-side scan rates of 10 
– 40 Hz are common.  Therefore, when flying at altitudes of 
500m-1000m above the ground, laser beam footprint 
spacings of 1 point per square meter are typical.  The 
ALSM measurements can be interpolated to generate DEMs 
with horizontal resolutions of 1m, vertical (elevation) rms 
errors of 10 – 20 cm, and horizontal rms errors of 20 – 40 
cm.  Penetration through foliage is achieved via the narrow 
beam divergence that, for a fraction of the shots, allows 
much of the pulse energy to reach the ground and return to 
the receiver.    

Previous approaches to stream network delineation 
were developed using DEMs that have far lower resolution, 
such as the USGS National Elevation Dataset (NED) [3].  
The NED dataset is a seamless DEM of the continental 
United States derived from stereo aerial photography, 
acquired over many years, and formatted with 30m 
horizontal pixel spacing.  Thus, previous stream delineation 
algorithms were developed to infer stream locations from 
the landform, applying empirical thresholds to ratios of 
terrain slope and area [4].  Even when high-resolution 
ALSM elevation images are used, stream networks inferred 
from DEMs in this manner were found to be significantly 
different from ground truth in several instances [5].  Thus, 
there was a need to develop a new method that would 
explicitly extract stream networks from high-resolution 
ALSM elevation images.   

In this work, we simulate realistic terrain DEMs on 
which we can calculate several error measures to 
characterize the performance of our stream detection 
algorithm.  Then we apply the algorithm to actual ALSM 
data over a challenging test site.  The low-relief karst 
topography of Northern Florida formed in response to 
erosional processes acting on the carbonate (limestone) 
bedrock. The drainage of rain water through this landscape 
has created a complex terrain, known as a multi-basinal 
drainage pattern that exhibits many small, closed watersheds 
[6]. Our site consists of an urban forest in the town of 
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Gainesville, Florida with 30m tall tree canopies dissected by 
residential streets. The study site was imaged in September 
2005 with an ALSM sensor owned by the University of 
Florida (UF), which is described in [7]. The dense forest 
cover acts as an occluding medium that dramatically 
reduces the number of ALSM samples that reach the ground.   
 

2. BASIC ALGORITHM THEORY 
 
Raw ALSM data comes in the form of an irregularly spaced 
“cloud” of discrete laser returns, and each point is 
associated with a 3D coordinate.  The ALSM point cloud 
data is first segmented into ground and non-ground points 
using the method in Kampa and Slatton [8].  The set of 
ground points is then interpolated to yield a bare-surface 
DEM. To detect the streams, this input elevation image is 
smoothed by convolution with a 7×7 diamond-shaped 
structuring element (SE). Then the inverse tangent is used 
as a simple non-linear scaling function to emphasize the 
small variations in elevation between stream channels and 
the surrounding stream banks.   

The bothat morphological operator (inverse of the 
better known tophat operator) [9] is then applied using the 
same diamond-shaped SE. The result is an image that 
displays the stream positions but has a very low contrast. 
Histogram equalization is performed to further exaggerate 
the pixel value range. The stream channels are segmented 
from the surrounding terrain by applying Otsu’s method to 
the grayscale image to form a binary image of stream and 
“non-stream” pixels [10]. Otsu’s method is an unsupervised 
clustering method that finds the pixel value threshold that 
maximizes the distance between the two resulting pixel 
value clusters, normalized by their standard deviations.  

The resulting binary image contains the detected 
streams, but it also contains a small number of short “stray” 
regions, a common artifact of morphological filters. The 
“stray” regions are not streams because they do not satisfy 
the criterion for a minimum length of a stream. These are 
removed using the simple “area” binary morphological 
operator that removes connected pixel groups of insufficient 
area. (110 pixels in this case) To precisely locate the 
streams, the centerlines are then found using the thinning 
algorithm in [9].  Overall algorithm details are given in [11].   

 
3. FILTER PARAMETER SELECTION USING 

SIMULATED TERRAIN 

The shape and size of the SE is very important in 
mathematical morphology.  Therefore, after developing the 
basic algorithm to detect stream centerlines, a sensitivity 
analysis was performed with respect to the shape and size of 
the SE.  We generate simulated elevation images using a 2D 
fractal process and embed meandering stream channels of 
different widths and depths. We then calculate a nominal 
ALSM scan pattern over this terrain, and randomly remove 

80% to 90% of those simulated ALSM points to mimic the 
occluding effects of a dense forest canopy. The remaining 
samples represent the ground points and are interpolated to 
simulate a bare surface DEM obtained from ALSM data. 

The stream detection algorithm can make two kinds of 
errors: false negatives and false positives.  A false positive 
occurs when the algorithm classifies a detected stream 
centerline pixel as belonging to the stream class but the true 
stream centerline does not pass through that location. A 
false negative occurs when the algorithm fails to classify a 
pixel as “stream” even though the true stream centerline 
passes through that location (see Fig. 1).   

If we let “×”denote a pixel that was detected (classified) 
as a stream centerline by our algorithm, and “ ” denote a 
pixel that is on the true stream centerline, we can associate 
each “×” with the nearest “ ” (nearest neighbor rule).  This 
establishes a one-way 1-to-1 correspondence between 
detected stream centerline pixels and true stream centerline 
pixels.  For each of these “×- ” pairs, we compute the 
Euclidean distance between them in 2D as  

2 2
omin omin omind X Y  (1) 

 
We then label all “×”s outside a search band around the 

true stream centerline of width 2  (i.e. mind ) as 
false positives. Based on the known ALSM resolution and 
nominal stream sizes, we set the width parameter  of this 
search band to be 5m.   

Let error metric (EM) of the first type EM1 be the total 
number of false negative pixels, fnN . True stream centerline 
pixels that have no corresponding detected pixel within the 

-band are simply summed. There is no distance 
associated with this error since there is no detected stream 
centerline pixel in this case. EM2 is the total number of 
false positives, fpN . These are simply the “×” pixels outside 
of the search band. No distance is associated with this error 
since closeness does not count outside the -band. 

It is possible to have a false positive inside the -
band.  However, we will not consider that an error since  
was chosen small to tightly conform to the stream. For those 
detected points that remain, i.e. “×” pixels that lie inside the 

-band, we sum their distances to the nearest “ ”.  This 
gives us omin TDd N  for EM3, where TDN  is number 

of true detected pixels. This is simply the mean absolute 
error. For EM4, we simply sum the three errors, normalized 
by the number of pixels in the true stream centerline N .  

fn fp o omin TD4 ( ) ( ) ( )oEM N N N N d N    (2) 

 
In [12], we showed that larger SEs result in more false 

positives (larger EM2) and are less likely to have stream 
disconnects (smaller EM1). We tested different SEs by 
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varying size and shape and found that the 7×7 diamond-
shaped SE yields the smallest total error (EM4).   

 

4. CONNECTING STREAM SEGMENTS 
 

As mentioned in Section 1, forest vegetation acts as an 
occluding medium.  Over our test site, it reduced the 
nominal ground point spacing of 1 point per square meter to 
roughly 0.12 points per square meter.  Because locally 
dense foliage can preclude ALSM returns from reaching the 
ground over small areas, it is possible to have some breaks 
in the detected stream paths.  For flow routing however, 
hydrologists desire unbroken stream paths.  Therefore, we 
must link the stream segments.  Several image processing 
approaches have been developed to link edges or contours 
in images. In classic edge linking, it is often assumed that 
two disconnected lines have the same orientation. However, 
for connecting irregular pixel paths, such as stream 
centerlines, we require a more general notion of 
connectedness. We use a connectivity number (CN) [13] to 
determine when disconnected stream centerlines should be 
joined.  

Given the binary image of detected stream centerline 
segments and a sliding 3×3 window, the CN specifies the 
number of black pixels (i.e. value = 1) connected to the 
center pixel when the center pixel is black (see Table 1).  
When diagonal connectivity is considered in addition to 
vertical and horizontal connectivity, it is referred to as 8-
connectivity [14].  We have  

1

8
0 1 2( ) ( ) ( ) ( ) ( )k k k k

k S

CN x f x f x f x f x  (3) 

where }7,5,3,1{1S , ( ) 1 ( )k kf x f x , and ( )kf x is 

the value of the thk binary pixel (0 or 1) in the 
neighborhood.  Note the numbering is modulo-8, so that 
when k =7, we have 2 9 1kx x x . CN is a many-to-one 
mapping that can take on one of five values: CN=0 for an 
isolated or inner point; CN=1 for an edge point or end point; 

CN=2 for a connected point; CN=3 for a branch point; and 
CN=4 for a cross point [14].   

End points (CN=1) are candidates for joining, but 
before connecting the main stream segments, small stream 
branches must be removed to prevent erroneous connections 
in this complex multi-basinal area.  These are removed 
using the distance between end points (CN=1) and branch 
points (CN=3).  Wherever that distance is less than 10 
pixels, the branch is removed.  

There are two criteria for the connecting process, one 
based on distance and another on pixel value difference in 
the original grayscale DEM image. The distances between 
all end points are calculated. Each end point is associated 
with its nearest neighbor end point.  If the distance between 
those neighbors is smaller than a user defined bound (15 
pixels in this case), they become a candidate pair for linking. 
The distances are then normalized to vary from 0 (farthest) 
to 1 (closest). For the difference criterion, the average pixel 
value under a 3×3 window centered at each candidate end 
point is calculated.  For each end point candidate pair, the 
difference between these two average values is calculated 
and normalized to vary from 0 (biggest) to 1 (smallest). 
Elevation difference is used as a criterion to avoid linking 
meandering stream segments that might be close in 
horizontal distance, but not in distance along the stream.   

Using these distance and difference criteria, we form a 
simple decision rule using a decision value (DV) and a 
weight parameter  as in (4).  Since the disconnected 
stream end points tend to be close together, we give greater 
weight to the distance criterion, so that = 0.8. Each 
candidate group thus is labeled with a decision value from 0 
(no need to connect) to 1 (should connect). When DV>0.25, 
the candidate end point pair is connected by a straight line.   

Distance 1 DifferenceDV     (4)
 

5. RESULTS AND DISCUSSION 
 
The result of applying the segmentation to a heavily 
forested test site is shown in Fig. 2.  The site is an urban 
forested floodplain.  The forest is composed of mixed 
hardwood and pine trees with dense understory vegetation 
that completely obscures the streams from traditional aerial 
photography.  The detected stream centerlines were verified 
using GPS survey points taken in the stream centers.   

2

False 
negatives 

False positives 
True detects 

Pixel 
 
Pixel that is on the true 
stream centerline.   
 
Pixel that is detected as 
a stream centerline.   

Fig. 1 Definitions of detection errors. The gray 
area represents a thin band of around the stream 
center line of width 2 .

 

Table 1.  3×3 neighborhood for computing 8-
connectivity at pixel 0x  

 4 3 2

5 0 1

6 7 8

1, 1 1, 1, 1

, 1 , , 1

1, 1 1, 1, 1

x i j x i j x i j

x i j x i j x i j

x i j x i j x i j
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An Ashtech Z-extreme GPS receiver was run at a 

solution rate of 1 Hz.  Due to the severe canopy attenuation 
and multipath, the nearly 25 GPS survey locations were 
occupied for almost one minute each to achieve a GPS 
horizontal rms position error of 0.72 m (excluding locations 
where solutions were too sparse for a reliable position 
estimate).  This error was estimated from the average 
standard deviations in X  and Y  solutions from the GPS 
survey points as 2 2

X Y .  The orthogonal distance from 
the nearest detected stream centerline pixel to each GPS 
point was then computed for the detection error. The 
minimum, maximum, mean, and standard deviation of the 
error were 0m, 8.94m, 3.43m, and 2.56m, respectively.  The 
mean error is quite small considering the nominal GPS error 
for measurements taken under dense canopy.   

Stream channel delineation is a very useful operation 
that leads to better decision making and planning for water 
resource managers. The growing use of ALSM DEMs in 
watershed analysis necessitates the modernization of stream 
detection algorithms that fully exploit high resolution 
ALSM elevation images.  Once the stream pixels are 

extracted, it is then possible to compute many parameters of 
import to hydrologists, such as channel width and bank 
height along the streams.   

Results over simulated and actual ALSM DEMs 
indicate that our approach performs well at detecting small 
and complex stream channels, even under dense forest 
canopies. Future work will focus on optimizing the selection 
of the weight  and DV threshold.   
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Fig. 2 (Top) 1m×1m bare-surface DEM of an urban 
forest test site.  The 300m×600m surface is largely 
occluded by 30m tall forest canopy and presents a 
complex stream network with confluences and 
ponds.  Relative elevations range from 0m (dark) to 
5.5m (light). GPS survey points are indicated with 
circles. (Bottom) Extracted stream centerlines 
overlaid on the DEM.  White boxes indicate 
locations where particularly dense canopy precluded 
the detection of the stream channel, thus 
necessitating the segment connection step.
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