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ABSTRACT

Many distributed video coders are implemented using sophis-
ticated error correction codes that use soft information (con-
ditional probabilities) as a priori knowledge. This a priori
information models the dependency behavior between the in-
put data and side-information. In this paper we analyze both a
symbol and bit plane-based approach using LDPC codes. We
show both theoretically and experimentally that a bit plane-
based encoder has the same performance as a symbol-based
coder, if an appropriate dependency model is chosen. We ar-
gue that due to a significant complexity reduction a bit plane-
based coder is preferable over a symbol-based approach.

Index Terms— Distributed video coding, bit plane-based,
symbol-based, LDPC

1. INTRODUCTION

The attractive idea of distributed source coding is that, in the
case of jointly decoding, two correlated sourcesX and Y can
be compressed separately without the awareness of the other
source and still attain the same compression as if the other
source was known. For the specific case where Y is available
at the decoder and X and Y are jointly Gaussian, Wyner [1]
proved that by using channel coding at the encoder it does
not matter whether Y is not known at the encoder. Moreover,
since the generation of a correlated source is only necessary
at the decoder, this has led to new insights in the video cod-
ing community especially for the purpose of low complexity
encoding of video. By using channel codes the differences be-
tween the correlated distorted version Y and the original input
X can be corrected. In distributed video coding the correlated
version Y is obtained from the motion compensated predic-
tion of X generated at the decoder. A lossy distributed video
compression scheme is usually equipped with a lossy quanti-
zation step before actual lossless compression (Slepian-Wolf
(SW) coding) of the input data. In literature two different ap-
proaches can be found, which are shown in Figure 1. In the
first symbol-based approach (Figure 1(a)) the symbols of the
original frame X are first quantized by a 2L-level quantizer
and SW coding is done on the symbols of Q and Y [4, 5].

In the second bit plane-based approach (Figure 1(a)) the bit
planes ofQ are first extracted before encoding [6, 7]. Initially
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Fig. 1. Distributed source coding using (a) symbol-based SW
decoder (S-SWD) (b) bit plane-based SW decoder (B-SWD)

distributed video coders (DVC) were carried out with simple
syndrome decoding techniques [2]. Not much later, DVCs
with more sophisticated codes, such as Turbo codes, were in-
troduced [3]. The benefits of these type of codes is that they
incorporate the underlying statistics of the channel noise into
the decoding process. This means for DVC that the symbol-
based dependency model (S-DM) P (X |Y ) between the sym-
bols ofX and Y can be incorporated if it is known or modeled
in advance. Moreover, in the first approach the symbol-based
Slepian-Wolf decoder (S-SWD) needs a symbol-based depen-
dency model (S-DM) that describes the relation between the
quantized symbols Q and side information symbols Y . This
can directly be extracted from the dependencymodel between
X and Y . For the second approach the bit plane-based SW
decoder (B-SWD) needs a bit plane-based dependency model
(B-DM) that describes the relation between the bit planes of
Q and side information Y .
In this paper we analyze both approaches theoretically and
experimentally. First question we answer is how to choose
the dependency model in the case of S-SWD and B-SWD in
order to compare both approaches. In many studies simplified
dependency models are used to describe the bit plane-based
dependency, like a BSC dependency [6] or directly calculated
from the earlier S-DM [7], which oversimplifies the actual de-
pendency. Therefore secondly more complex B-DMs are ana-
lyzed, where the symbols of Y are taken into account together
with already correctly decoded bit planes. To do a full anal-
ysis also the complexity of decoding is taken into account.
In [8] it was shown that the complexity of the LDPC decoding
grows linearly with the number of bits per symbol. This only
holds true for a specific implementation with FFT-transforms,

II - 171-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007



while other standard implementations using convolutions are
far more complex.
The structure of this paper is as follows. In Section 2 the
symbol-based dependencymodel and three different bit plane-
based dependencymodels are discussed and compared by com-
puting the minimal achievable rates. Section 3 describes how
these dependency behaviors can be modeled at the decoder
side. For each of these models an analytical expression is
given. These models are experimentally compared in Section
4 using synthetic and real video data. Finally, conclusions can
be found in Section 5.

2. ACHIEVABLE RATES

In this section we discuss and compare the minimal achiev-
able rate to have lossless Slepian-Wolf coding for a B-SWD
and a S-SWD as shown in Figure 1. As shown SW coding in
S-SWD is done on the 2L-level quantized input symbols Qof
X . While in B-SWD SW coding is done on the L bit planes
of Q separately. The minimal achievable rate is expressed by
Slepian and Wolf in terms of the conditional entropy between
Q and Y . This is straightforward in the case of S-SWD and
is given byH(Q|Y ). In the case of B-SWD the rate is depen-
dent on the type of information that is taken into account in
this conditional entropy measure. The dependencymodel can
be expressed by

1. the corresponding bit plane Q and Y (B-DMb), i.e.
P (Q(b)|Y (b)) with b = 0 as LSB and b = L − 1 as
MSB.

2. the bit plane of Q and all bit planes – i.e. the symbol –
Y (B-DMs), i.e. P (Q|Y (b)).

3. the bit plane of Q and symbol Y together with already
(correctly) decoded bit planes of Q (B-DMs+b), i.e.
P (Q(b)|Y, Q(b+1), . . . , Q(L−1))

The order of the list indicates the complexity of the depen-
dency incorporated in the model. In theory by using all avail-
able information at the decoder side the minimal achievable
rates for S-SWD and B-SWD are identical, since

H(Q|Y ) = H(Q(0), . . . , Q(L−1)|Y )

=

L−2X

b=0

H(Q(b)|Y, Q(b+1), . . . , Q(L−1))

+H(Q(L−1)|Y ). (1)

The models B-DMb and B-DMs result in an increase in en-
tropy since

H(Q|Y ) =

L−2X

b=0

H(Q(b)|Y, Q(b+1), . . . , Q(L−1)

+H(Q(L−1)|Y )

≤

L−1X

b=0

H(Q(b)|Y ) ≤

L−1X

b=0

H(Q(b)|Y (b)). (2)

Consequently, the B-DMb and B-DMs models will result in
a performance loss when compared to the B-DMs+b and S-
DM in Eq. (1). If we rank the expected performance of all
models, we expect S-DM and B-DMs+b to perform the best,
and B-DMb to have the worst performance.

3. PRACTICAL DEPENDENCY MODELS

To implement the dependency models in a practical LDPC-
based distributed video decoder, we need estimates of the
probabilities P (Q|Y ), P (Q(b)|Y (b)), P (Q(b)|Y ) and
P (Q(b)|Y, Q(b+1), . . . , Q(L−1)) of the four dependencymod-
els on which the entropies were based in the previous section.
Following the work in [9] and [5], we determine the S-DM
P (Q|Y ) based on a Laplacian PDF PN (n) that models the
behavior of the noiseN in the dependency channel. Then, the
S-DM discrete conditional probabilitiesP (Q|Y ) are found by
adding the probabilities of P (X |Y ) = PN (n) for X-values
lying inside the same quantization bin.
First estimates are found for the B-DMs conditional probabil-
ities P (Q(b)|Y ) from which the B-DMb probabilities
P (Q(b)|Y (b)) can be derived. The conditional probabilities
for the B-DM are derived from the S-DMP (Q|Y ). For B-DMs
holds that both bit values of bit plane b = 0 of Q and Y are
equal if the distance betweenQ and Y is 0 or a multiple of 2,
since

P (Q(0) = bq|Y = y, Y (0) = bq) =
X

q=··· ,y−2,y,y+2,...

P (Q = q|Y = y). (3)

In Eq. (3) bq is a constant that is either 0 or 1. Dependent on
the bit value of Y in the corresponding bit plane b the B-DMs
can be derived a similar yet somewhat more complicated ex-
pression , namely:

P [Q(b) = bq |Y = y, Y (b) = bq ]

=

q+X

m=−q−

rmaxX

n=0

P (y + m · d + (n− r(y, 2b))|y)

=

q+X

m=−q−

rmaxX

n=0

P (m · d + (n− r(y, 2b))), (4)

with q− = q(y, 2b+1), q+ = q((2L − 1) − y, 2b+1), rmax =
2b − 1, d = 2b+1 and where the functions r(a, b) and q(a, b)
are the remainder and quotient of the division between two in-
teger values a and b. The conditional probabilityP (Q(b)|Y (b))
of the B-DMb can now be found using Eq. (4) as follows:

P [Q(b) = bq |Y
(b) = bq]

=
X

∀Y

P [Q(b) = bq |Y = y, Y (b) = bq] · P [Y = y|Y (b) = bq], (5)

where P [Y = y|Y (b) = bq] is 0 or 1 depending on whether
the bit plane of Y equals bq. Note that Eq. (5) does not yield
a BSC model. From Eq. (5) we can obtain a BSC model with
crossover probability pc as follows:

pc =
X

bq=0,1

P [Q(b) �= bq|Y
(b) = bq ]P [Y (b) = bq], (6)
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Fig. 2. Finding conditional probabilities of Qb = 0, 1 given
the conditional probability density model P (Q|Y ) and the
values of all previous decoded bit planes (Qb+1,. . . ,QL)

where P [Y (b)] are the a priori probabilities of bit plane b

of Y . Finally, the information from the previous correctly
decoded bit planes is incorporated to derive the conditional
probabilitiesP (Q(b)|Y, Q(b+1), . . . , Q(L−1)) for the B-DMs+b
dependency model. Figure 2 shows the conditional proba-
bilities for bit plane b for two different cases together with
the continuous dependency model P (X |Y ) for two differ-
ent values of Y (y1 and y2), the quantized original symbol
Q = q and three threshold values Zmin, Zmid and Zmax.
The threshold values have the same bit values for b = b +
1, . . . , L− 1 as the already decoded bit planes ofQ = q. Fur-
thermore, Zmin, Zmid and Zmax is the minimum, the middle
value and maximum value with the same previous decoded
bit plane values as Q = q. So that the area under the density
P (X |Y ) from Zmin to Zmid and Zmid to Zmax indicates the
value of P (Q(b)|Y, Q(b+1), . . . , Q(L−1)) with Q(b) = 0 and
Q(b) = 1 of the B-DMs+b dependency model respectively:

P (Q(b) = 0|Y = y, Q(b+1), . . . , Q(L−1))

=

2b
−1X

i=0

P (q(xp, 2b+1) · 2b+1 + i|Y = y)

=

2b
−1X

i=0

PN (q(xp, 2b+1) · 2b+1 + i− y),

P (Q(b) = 1|Y = y, Q(b+1), . . . , Q(L−1))

=

2b+1
−1X

i=2b

PN (q(xp, 2b+1) · 2b+1 + i− y). (7)

with xp =
∑L−1

i=b+1 Q(i) · 2i.

4. EXPERIMENTS

In this section we experimentally compare the compression
ratios of a bit plane and symbol LDPC-based distributed video
coder on synthetically generated data and real video data us-
ing the theoretical dependency models of Section 3.
In the first experiment we use synthetically generated data.
The original dataX is a discrete-valued vector of lengthK =

25344 (QCIF size); each value is randomly drawn from an
uniform distribution on [0, 255]. Side information Y is gen-
erated by adding Gaussian distributed random noise N with
with zero mean and variance σ2

N = 4 to X . Both the origi-
nal data as well as side information Y are quantized using a
16-level uniform quantizer, hence the input to the SW coder
are 16-level symbols or 4 bit planes. The S-DM conditional
probabilities P (Q|Y ) are calculated from the noise N . The
conditional probabilities required for the B-DMs are calcu-
lated using the Eqs. (4), (5) and (7) in Section 3. The result-
ing conditional entropies, calculated using Eqs. (1) and (2),
are given in Table 1, third row (labeled ’EntropyH’), for the
four different dependency channel models. We observe that
these estimates satisfy the (in)equalities in Eqs. (1) and (2).
We also observe that the simple model B-DMb performs very
poorly compared to the more sophisticated channel models.
The fourth row in Table 1 gives the result of actual bit plane
and symbol-based DVC coding using LDPC codes [10, 11].
The listed bit rates are those minimally required required for
error-free decoding of the received LDPC bit stream. We ob-
serve that the performance rating in this case is conform the
measured entropy values of each of the dependency models.
We can also observe that there is still a big gap between the
minimal coded bit rate needed for perfect decoding and the
measured entropy value. In the second experiment real video

Dependency
S-DM B-DMb B-DMs B-DMs+b

EntropyH 0.28 0.88 0.48 0.28
Coded Rate R 0.41 1.21 0.67 0.41

Table 1. Total entropies in and real coded rate in bit/symbol
for the four different dependency model assumptions: (1) S-
DM, (2) B-DMb, (3) B-DMs and (4) B-DMs+b

.

data is used. The side information Y is an extrapolated pre-
diction of X based on three previous frames [5]. The depen-
dency between X and Y is estimated by a Laplacian PDF
with zero mean. The variance of the PDF is estimated from
the correctly decoded frameQ and predicted side information
Y of the previous frame. In this case the dependency model
is an estimate of the real behavior of the data. Before SW
coding with LDPC the input is quantized with a 16-level uni-
form quantizer. The dependency behavior between the sym-
bols of X and Y is modeled by a Laplacian PDF with zero
mean. In Figure 3 the minimal coded bit rates needed for per-
fect decoding for the four assumed S-DM and B-DM models
are shown as well as the achievable rateH(Q|Y ) for the first
100 frames of the Foreman sequence and the first 90 frames
of the Stefan sequence, both in qcif format. This figure also
shows that there is a big gap between the theoretical bound-
ary H(Q|Y ) and the minimal coded bit rate. We further ob-
serve from Figure 3 the following. First, S-DM and B-DMs+b
perform equally and both outperform the B-DMb and B-DMs
which satisfies Eq. 1. The differences between S-DM and
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Fig. 3. Coded bit rate results using different dependency models for the symbol and bit plane-based distributed video coders
for both the (a) Foreman and (b) Stefan sequences

B-DMs+b are caused by the limited amount of coding rates of
the symbol and bit plane-based DVC coder.

5. CONCLUSIONS

In this paper we have shown that if the dependency channel
model is known both the a symbol-based and a bit plane-
based approach can performs equally, conditioned on the de-
pendency measure that is taken into account. Also in a dis-
tributed video coder, where the dependency channel is not
known, both approaches performs approximately equally if
the correct bit plane dependency model is assumed. Since the
complexity of a symbol-based LDPC decoder is roughly L

times (L denotes the number of bit planes) more complex than
a bit plane-based decoder. A bit plane-based LDPC coder is
preferred for the purpose of distributed video coding.
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