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ABSTRACT

We present a generalization of Benford’s law for the first signifi-
cant digit. This generalization is based on keeping two terms of the
Fourier expansion of the probability density function of the data in
the modular logarithmic domain. We prove that images in the Dis-
crete Cosine Transform domain closely follow this generalization.
We use this property to propose an application in image steganaly-
sis, namely, detecting that a given image carries a hidden message.

Index Terms— Benford’s law, DCT, Fourier series, setaganaly-
sis, watermarking.

1. INTRODUCTION

Benford’s law of “anomalous digits” was enunciated by General
Electric’s physicist Frank L. Benford in 1938 [?], and predicts the
frequency of appearance of the most significant digit (MSD) for a
broad range of natural and artificial data. Given a number in decimal
form, the MSD is simply the leading digit of the mantissa (assuming
that the exponent is a power of 10); hence, the MSD cannot take the
value 0. For instance, the MSD of 2.85 is 2, and the MSD of 0.0034
is 3. Benford’s law tells that the probability that the MSD take the
value d ∈ {1, 2, · · · , 9} is

P (d) = log10(1 + 1/d) (1)

Since Benford’s paper, many works have made significant con-
tributions at both the fundamental and the application levels. It can
be safely said that the underlying mechanisms that make Benford’s
law hold in many useful situations are known; these will be briefly
reviewed in Section ??. On the other hand, at a practical level, Ben-
ford’s law has been shown to apply to half-life time of radioactive
particles [?], financial data [?], regression coefficients, and many
other types of data. Of particular interest for our purposes is the
work by J.M. Jolion [?], who showed that Benford’s law holds rea-
sonably well in gradient images and in pyramidal decompositions
based on the Laplace transform. To the best of our knowledge, the
only other work dealing with Benford’s law for images is due to E.
Acebo and M. Sbert [?], who proposed the use of Benford’s law to
determine whether synthetic images were generated using physically
realistic methods, although the fact that many real images do not fol-
low Benford’s law (see Section ??) puts this application in question.

In this paper we show that while images in the “pixel” domain
seem not to obey Benford’s law, the situation changes quite dramat-
ically when they are transformed using the Discrete Cosine Trans-
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form (DCT). Furthermore, we will present a generalization of Ben-
ford’s law, based on Fourier analysis, that leads to a much closer fit
to the observed digits frequencies. We will also give a theoretical
explanation of why images in the DCT domain satisfy the general-
ized law; such explanation heavily relies on well known and thor-
oughly tested statistical properties of DCT coefficients. Finally, we
will hint at some possible applications in forensics, by showing how
the Fourier-based formulation can be used to detect whether an im-
age has been watermarked.

2. BACKGROUND

In this Section we will recall some of the known properties that affect
random variables in the context of Benford’s law.

Property 1 A random variable X follows Benford’s law if the ran-
dom variable Y = log10 X mod 1 is uniform in [0, 1).

A random variable satisfying this latter property is called strong
Benford, while the domain where Y is defined is called the Benford
domain.

Property 2 (Scale invariance): Suppose that X follows Benford’s
law; then the random variable Z = αX will follow Benford’s law
for an arbitru ary α if only if X is strong Benford.

Besides scale invariance, it can be shown that Benford’s law is
also related to base invariance. In fact, it can be shown that a random
variable is scale and base invariant if and only if it is strong Benford.

Property 3 (Product of independent random variables): Let X
be strong Benford, and let Y be another random variable indepedent
of X . Then, the random variable Z = X · Y is strong Benford.

The product interpretation connects Benford’s law to mixtures of
random variables. Mixtures of random variables are relevant in im-
age processing after the proof by Hjorungnes et al. [?] that a Lapla-
cian distribution (often used to model the coefficients of a block-wise
DCT transform) can be written as a mixture of Gaussians whose
variance is controled by an exponential distribution. Thus, if fX(x)
denotes a zero-mean unit-variance Gaussian pdf, the mixture takes
the form

fZ(z) =

Z ∞

0

fX(z|σ2)fσ2(σ2)dσ2
(2)

where fσ2(σ2) is an exponential. Interestingly, mixtures of the gen-
eral form given in (??) can be written in such a way that Prop-
erty ?? can be straightforwardly applied. Indeed, the random vari-
able Z whose pdf is fZ(z) is obtained through (??) can be written

as Z = X · √Σ, with Σ the random variable that controls the vari-
ance. From here, it is immediate to conclude that if either X or

√
Σ

conform to Benford’s law, then Z will also do so.
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Fig. 1. Figure ‘Man’ used in the experiments.

(a)

(b)

Fig. 2. Histogram of the luminance values of ‘Man’ in Benford (log10
mod 1) domain (a); Distribution of the MSD corresponding to ‘Man’ (b).

3. APPLICATION OF BENFORD’S LAW TO IMAGES

Given the seemingly good match of natural phenomena to Benford’s
law, it is reasonable to ask whether this will be so for images. Unfor-
tunately, it is well known that image luminances possess a histogram
that does not admit a closed-form, as there is a strong variation from
picture to picture. Hence, it is highly unlikely that Benford’s law, or
a generalization, be applicable here. Our experiments confirm that
grey-level images do not satisfy Benford’s law. To illustrate, con-

(a)

(b)

Fig. 3. Histogram of the DCT values of ‘Man’ in Benford (log10 mod 1)
domain (a); Distribution of the MSD corresponding to ‘Man’ (b). Block size
is 8 × 8.

sider the image ’Man’ shown in Fig. ?? for which the histogram of
the variable log10 X mod 1 is shown in Fig. ??(a). Clearly this his-
togram falls short of being constant, which would guarantee compli-
ance to Benford’s law. Consequently, the MSD distribution is quite
different from that proposed by Benford, as plotted in Fig. ??(b).

However, one obtains quite different results when considers the
block-wise DCT transform, as it is found that the coefficients thus
produced match Benford’s law reasonably well. Figure ??(a) shows
the histogram of the variable log10 X mod 1, with X given in the
block-DCT domain, for the image ’Man’, while Fig. ??(b) repre-
sents the distribution of the MSD, which now lies much closer to
Benford’s distribution. The DCT block size used in these figures is
8 × 8; however, similar results are obtained by considering other
block sizes as well as other images. A crucial observation from
Fig. ??(a) is that the histogram is not really flat, but instead can be
modeled with a constant plus a sinusoidal (AC) term. This somehow
suprising phenomenon was observed in all images we tried, thus sug-
gesting a generalization of Benford’s law to accommodate the extra
term.

The crucial question is therefore why DCT coefficients follow
this generalized form of Benford’s law. The following fact is known
about images in the DCT domain: the coefficients of a block-based
DCT can be accurately modeled by a Generalized Gaussian (GG)
distribution. For instance, let b(n)(i, k), i, k ∈ {0, · · · , 7} denote

the (i, k)-th coefficient of the DCT of the n-th block. Then, b(n)(i, k)
for all n can be thought of as being drawn from a GG distribution.
A GG distribution has the form fX(x) = Ae−|βx|c , where A and β
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are expressed in terms of c and the standard deviation σ as follows

β =
1

σ

„
Γ(3/c)

Γ(1/c)

«1/2

; A =
βc

2Γ(1/c)
(3)

The parameter c is also regarded to as the shaping factor. Unfortu-
nately, the parameters σ and c vary with the frequency indices (i, k).
This implies that the coefficients that we are modeling should be
rather considered as being generated by a mixture of GGs.

4. A FOURIER-SERIES-BASED MODEL

The sinusoidal character of the histogram in Fig. ??(a) suggests that
a Fourier representation for the pdf of the variable X̃ � log10 X
mod 1 would be plausible. We can write

fX̃(x) = 1 + 2

∞X
k=1

|ak| cos(2πkx + φk), x ∈ [0, 1) (4)

where ak = |ak|ejφk is the kth Fourier coefficient. Note that this
representation is valid as long as the conditions for convergence of
the Fourier series are met. However, the cases of specific interest
to us are those for which the magnitude of the Fourier coefficients
|ak| is small for moderate and large k. Note that the case of a strong
Benford random variable corresponds to |ak| = 0 for all k ≥ 1.

We want to show that a GG random variable can be very accu-
rately modeled in the Benford domain by a distribution composed
of a constant and one sinusoidal term. To this end, we compute the
coefficients of its Fourier series

an =

Z ∞

−∞
fX̃(x)e−j2πnxdx

=
2A

βc
e

j 2πn log β
log 10 Γ

„−j2πn + log 10

c log 10

«
(5)

The most important observation is that the magnitude of the co-
efficients in (??) decreases very rapidly with n. In fact, it is possible
to show that

|an|2 =

∞Y
k=0

„
1 +

(2πn)2

log2(10)(ck + 1)2

«−1

(6)

which, if truncated, quickly converges to the true value. Moreover,
from (??) it is easy to see that the Fourier series coefficients mon-
tonically increase with the shaping factor c.

To get an idea of the magnitude of an, we have evaluated (??)
for different values of c. For a Gaussian (i.e., c = 2) the following
magnitudes are obtained

n 1 2 3 4

|an| 0.165849 0.0194532 0.00228155 0.00026759

while for a Laplacian (i.e., c = 1) we get the following values

n 1 2 3 4

|an| 0.0569 0.00110 1.866 · 10−5 2.964 · 10−7

Finally, for c = 0.5 we observe that the magnitudes are so small
that even |a1| = 0.00614761. The main consequence of all these
evaluations is that for all values of the shaping gain smaller than 2
(which are typical in images), the following approximation

fX̃(x) ≈ 1 + 2|a1| cos(2πkx + φk), x ∈ [0, 1) (7)

Fig. 4. Empirical digit distribution and generalized Benford’s law. a1 =
0.067; φ1 = −1.221 rad.

is reasonable. In Fig. ?? we plot the theoretical MSD distribution
that results after using the approximation in (??), which leads to an
excellent agreement with the empirical distribution.

So far, we have shown that a GG distribution can be closely
approximated as in (??). However, as we have remarked, different
DCT coefficients will have different parameters σ and c. Suppose
that these two parameters can be modeled as being drawn from a
joint distribution fC,Σ(c, σ). Then, the pdf of the variable in the
Benford domain can be written as

fX̃(x) = 1 +

Z Z ∞X
k=−∞
k �=0

ak(c, σ)ej2πkxfC,Σ(c, σ)dc · dσ

= 1 + 2Re{
∞X

k=1

akej2πkx} (8)

where ak is the mean value of ak averaged over the joint distribu-
tion of C and Σ. Then, as long as the averaged coefficients ak are
such that their magnitude is small for k > 1, the approximation
of the form (??) is valid. Now suppose that c is such that for all
i, k, c(i, k) ≤ c+, then for all (i, k) and all n it can be proven that
|an(c, σ)| ≤ |an(c+)|, again suggesting that for values of c+ less
than 2, as is customary in practice, the approximation given in (??)
is valid.

The previous discussion has important implications in video: if
all frames of a video sequence can be modeled as in (??), then the
whole sequence will also satisfy this property. Therefore, our gener-
alized form of Benford’s law will apply to video sequences as well,
provided that one works with the block-DCT coefficients of each
frame.

5. IMAGE FORENSICS IN THE BENFORD DOMAIN

As pointed out in the Introduction, Benford’s law has been success-
fully applied to detect fraud in tax data [?], [?]. The test is based
on the assumption that real data follow Benford’s law on the basis
that they come from many independent sources with different scales.
Other recent applications in forensics include the detection of scien-
tific data manipulation and the analysis of fabricated data in surveys.

In view of those applications, it is natural to ask whether Ben-
ford’s law may find any use in image forensics. Although we foresee
other specific applications, here we focus on image steganography.
We have seen in the previous section how DCT coefficients of natu-
ral images conform to a generalized form of Benford’s law for which
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the AC coefficients of the Fourier expansion in the Benford domain
are very small, except for the first one (i.e., |a1|). Then, it is reason-
able to think of using the following test:

1. Compute the magnitudes of the Fourier coefficients in the
Benford domain.

2. Determine the “noise-level” by averaging the Fourier coeffi-
cients over a suitable window. This noise-level is chracterized
by a mean and a variance.

3. Find the index n∗ of the coefficient such that its magnitude
is greater (in a statistically significant sense) than the noise-
level.

4. If n∗ > 1, then the image is declared as watermarked.

To verify the plausibility of the proposed test, we have water-
marked the ’Man’ image in the DCT domain using the spread-spectrum
method proposed and analyzed in [?]. This method allows to achieve
a better concealment of the watermark by taking into account the
characteristics of the human visual system through the computation
of a so-called perceptual mask that modulates the amplitude of the
watermark. It is important to remark that the method considered
here somewhat favors a Benford-inspired steganalysis, because wa-
termarking takes place in the same domain as the data that conforms
to the generalized Benford distribution. Watermarking in other do-
mains (e.g., the spatial) might be harder to detect with the proposed
test, nevertheless exhaustive experiments have yet to be carried out.

Table ?? summarizes the results obtained for the original image
‘Man’ (non watermarked). For each value of n, we represent the
value of |an|, and the mean μn and typical deviation σn of the vec-
tor (|an+1|, · · · , |an+L|)T , where L is the window-length (in our
experiments set to 8) and T denotes transpose. Again, we select
the largest index n∗ such that |an∗ | > μn∗ + 2.58σn∗ . This value
of 2.58σn guarantees a probability of false positives less than 0.01
under a Gaussian distribution.

n 1 2 3 4 5

|an| 0.0670 0.0032 0.0035 0.0037 0.0015

μn 0.0032 0.0029 0.0027 0.0028 0.0028

σn 0.0013 0.0016 0.0016 0.0017 0.0017

Table 1. Fourier coefficients and noise-level parameters for the original.

Clearly, for this case n∗ = 1, thus suggesting that the image
under study had not been watermarked. Next, we consider the case
where the image is watermarked using the perceptual mask, but with
a large watermark power that renders it visible. The PSNR (Peak
Signal to Noise Ratio) was for this case 25 dB (note that for an in-
visible watermark it is customarily assumed that at least 35 dB of
PSNR are necessary). The parameters for the test in this case are
shown in Table ??.

n 1 2 3 4 5

|an| 0.1270 0.0138 0.0044 0.0004 0.0010

μn 0.0036 0.0021 0.0017 0.0021 0.0022

σn 0.0041 0.0012 0.0007 0.0009 0.0008

Table 2. Fourier coefficients and noise-level parameters for the water-
marked image with PSNR=25 dB.

It is clear that now n∗ = 3, evidencing that the image was water-
marked. For our final experiment, we decided to increase the PSNR

n 1 2 3 4 5

|an| 0.0827 0.0081 0.0040 0.0030 0.0004

μn 0.0037 0.0028 0.0027 0.0029 0.0030

σn 0.0024 0.0018 0.0017 0.0018 0.0017

Table 3. Fourier coefficients and noise-level parameters for the water-
marked image with PSNR=40 dB.

to 40 dB so as to make the watermark less visible and expectedly
less detectable; the results are given in Table ??.

We see that n∗ = 2, still correctly suggesting that the image was
watermarked. Again, we stress that these only consitute preliminary,
albeit promising, results and that exhaustive testing is necessary.

6. CONCLUSIONS

The gradual and inevitable advance towards an all-digital world has
brought about the undesirable feature of expediting the manipulation
or even the fabrication of digital assets. There is then an increasing
need for simple tools that allow to identify those misuses as a first
step to a more detailed and costly analysis. Benford’s law is an excel-
lent candidate which, in fact, is already being used in some commer-
cial software packages for the analysis of financial fraud. Here we
have shown how a generalization of Benford’s law can be employed
for steganalytic purposes in images, that is, for detecting whether
a certain natural image contains a hidden message. We have done
so by proving for the first time that Generalized Gaussian distribu-
tions follow a generalized form of Benford’s law and, furthermore,
that this extends to combinations of GGs, opening the gate to video
forensic applications.
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