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ABSTRACT
This paper introduces a framework to track 3D human movement
using Gaussian process dynamic model (GPDM) and particle lter.
The framework combines the particle lter and discriminative learn-
ing approaches so that the 3D human model is not needed and op-
timal proposal distribution can be used. The structure of the joint
motion and appearance are modelled using GPDM in a low dimen-
sional space. Relevance vector machine (RVM) is used to construct
the regression mapping between image latent space and joint angle
latent space using the small training data set. Backward mapping
from appearance to motion latent space makes the samples better
drawn according to the most recent observation. Forward mapping
from joint angle to silhouettes makes computation fast without gen-
erating synthetic images in tracking for particle weight evaluation.
The experimental results show that our approach can track 3D peo-
ple movement accurately given noisy image and different subjects’
movements.

Index Terms— 3D Human Motion Tracking, GPDM, Particle
lter, RVM

1. INTRODUCTION

Robust tracking of body kinematics of human movement from videos
has been a big challenge in computer vision area for over a decade.
There are two general solutions proposed to tackle the problem. One
is model-based and another is view-based.

For model-based approaches, the explicitly specifying articu-
lated models of the body parts, joint angles and dynamics are ex-
ploited in high dimensional space by searching the optimal solutions.
The posterior probability of the human pose is obtained from Bayes’
rule [9]. As an application of human pose tracking, particle lter
is widely used as temporal inference. However, they usually lack
an ability to directly use the data structure existing in the observa-
tion and direct map from observation to the state space. In addition,
it’s challenging to evaluate the weights of a large number of parti-
cles in the generative frame. The view-based approaches infer the
human pose directly from the image observation. It estimates the
pose using the examples obtained from the training images. Differ-
ent learning approaches can be applied, including nearest-neighbor
[10], relevance vector machine(RVM) [11]. But this method does
not explore the rich dynamics represented in the state space. Also
this approach requires a suf cient number of training examples to
learn the good mapping.

For both approaches, the high dimensional data of the 3D poses
and image observations make the problem harder. One way to tackle
the problem is to reduce the dimensionality through nonlinear di-
mensionality reduction. In [3], Elgammal used manifold recovery

method such as LLE to recover the underlying structure in the silhou-
ette space and conduct regression of joint angles. In [2], Grauman
inferred the 3D body structure from probabilistic PCA of combina-
tion of input silhouettes and 3D poses. In [1], Sminchisescu used
kernel PCA over image inputs and joint angles and learned the un-
derlying multimodal mapping from inputs to outputs using Bayesian
mixture expert. Both [2] and [1] approaches do not use any dynamic
information for the 3D poses as the tracking application. Recently,
sophisticated generative models such as Gaussian Process Dynamic
Model (GPDM)[6] have shown to be able to capture the underlying
dynamics of movement and at the same time reduce the dimension-
ality of movement data. Such models have been used as priors for
kinematic tracking of walking successfully.

By combining the view-based and model-based approaches in
embedding space[4], the tracking system can better draw samples in
particle lter framework. Still their approach modeled the dynamics
using basic rst order Markov model and a complex 3D model was
needed to obtain the observation likelihood. In this paper, we pro-
pose a 3D human motion tracking system in a particle lter frame-
work using GPDM. The system explores the underlying structures of
the joint movement and appearance modeled by GPDM as the prior
information. The mapping from silhouette to kinematics is utilized
to better draw particles according to the most recent observation. For
the likelihood calculation, the system is able to conduct fast compu-
tation by mapping from latent space of joint motion to visual latent
space without need of generating synthetic images.

A sketch of our system is given in gure 1. It includes the learn-
ing part and the tracking part. The learning process will obtain the
parameters of the system and the tracking part implements particle
ltering from learned models.

For the learning part, rstly we use GPDM to obtain the low di-
mensional manifold Lj, the latent space of the local joint angles and
Ls, the latent space of silhouettes for different views. Given such
two embeddings, the nonlinear mapping between these two low di-
mensional spaces are learned. Forward mapping from Lj to Ls and
the backward mapping from Ls to Lj are established using sparse
Bayesian regression such as relevance vector machine. In tracking,
the latent points of the input silhouettes are localized. Then based
on this, we determine ”observations” in Lj using the backward map-
ping. By using these latent observations, the dynamics can be better
used to produce particles. Instead of using 3D human model to gen-
erate images, we forwardly map those particles to the corresponding
points in Ls, then to visual space. The likelihood is evaluated by
computing the distance between observed image data and new gen-
erated data in visual space.

The details of the learning and tracking steps are described in
the following part.
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Fig. 1. Overview of our framework.(a): Learning process. (b):
Tracking process.

2. IMAGE FEATURES REPRESENTATION

Among image features, silhouettes have been commonly adopted
due to the simplicity of silhouette extraction. A number of silhouette
representations have been applied to kinematic recovery, including
Hu-movement, shape context. Studies [12] shows that shape context
representation is better than Hu-moments. Here we use a Gaussian
mixture model (GMM)-based silhouette representation [13]. GMM
model considers that the silhouette is represented as a set of co-
herent regions in 2D space. It’s critical to measure the silhouette
similarities. Based on the GMM descriptor, the Kullback-Leibler
divergence (KLD) is used to measure the distance between two sil-
houettes (pixel spatial distributions). Although GMM representation
with KLD measurement can capture the similarity of the image sil-
houettes well, it is not a simple way in computation as the vector
representation. To obtain the vector descriptor for each GMM de-
scriptor, we use the relative distances of one silhouette to several key
silhouettes to locate this point. The distance between the measured
silhouette and each key silhouette is one element in the vector. So
the key frames are needed as the bases. From the silhouettes training
data, the distance matrix of all silhouettes is computed rstly. The
multidimensional scaling(MDS) is performed on the distance ma-
trix. The eigenvalues are analyzed to decide the key frame number.
In 3000 training samples, 46 dimension can keep 99.5% variance
of the eigenvalues. This is the dimensionality of the silhouette vec-
tor. To obtain the key silhouette, k-means is used to get the cluster
centers of the training samples. Because no clear cluster center ex-
ists, we pick up the sample which is the closest to the cluster center
as one key silhouette. The distance matrices in Figure 2 show that
GMM vector representation measures the relative distance of the sil-
houettes better than shape context vectorization.

3. SYSTEM LEARNING

3.1. Gaussian Process Dynamic Model

Gaussian Process Dynamic Model (GPDM) [6] provides a low di-
mensional embedding of the data and the latent dynamics simul-
taneously. [8] extended the GPDM to balanced GPDM to handle

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

Fig. 2. Distance matrices for 149 frames side view walking silhou-
ettes. Dark blue-colored pixels indicate small distances. The peri-
odic pattern is caused by both repeated movement in different gait
cycles and the half cycle ambiguity. Left: Computed from KLD for
GMM. Middle: Computed from GMM vectorization using 46 key
frames. Right: Computed from shape context vectorization using 90
clusters with 8000 training samples.

multiple subjects’ stylistic variation by raising the dynamic den-
sity function. Given a set of data Y = [y1, ..., yt, ..., yN ]T and
denote the latent variable associated with each data point as X =
[x1, ...xt, ..., xN ]T . yt are D-dimension data points and we assume
that they have subtracted the mean μ and are zero mean. xt are d di-
mension data points. Here d < D. As a regression function, GPDM
de nes two Gaussian processes to relate yt with xt and xt with xt−1

at time t. The model is de ned as:

xt = Aφ(xt−1) + nx,t (1)

yt = Bϕ(xt) + ny,t (2)

where A and B are regression weights, nx,t and ny,t are normal
Gaussian noise. φ(xt−1) and ϕ(xt) can be linear or nonlinear kernel
functions.

Marginalizing over A and B gives the latent dynamics and the
latent variables:

p(X|Φ) ∝ exp(−1

2
tr(K−1

x (X̂ − X̃)(X̂ − X̃)T ) (3)

P (Y |X, Ψ) ∝ exp(−1

2
tr(K−1Y Y T )) (4)

where X̂ = [x2...xt]
T and X̃ = [x1...xt−1]

T . Kx is the kernel
associated with the dynamics Gaussian process and is constructed
on the matrix X̃. We use an RBF kernel and white noise term for
GPDM dynamics:

kx(xt, xt−1) = αdexp(−γd

2
||xt − xt−1||2) + β−1

d δt,t−1 (5)

where Φ = (αd, γd, βd) are dynamics parameters.
ϕ(xt) = [k(xt, x1), ...k(xt, xi)..., k(xt, xN)] is column vector

of the kernel function k(xt, xi). Here we use the RBF kernel

k(xt, xi) = αexp(−γ

2
||xt − xi||2) + β−1δxt,xi (6)

where α is the overall scale of the output, γ is the inverse width of
the RBFs. The variance of the noise is given by β−1. k(xt, xi) is the
elements of the kernel matrix K. Ψ = (α, β, γ) are the unknown
model parameters.

GPDM learning is to learn the model parameters Ψ, Φ and latent
variable X. That is equivalent to minimize the negative log of the
object function with respect to the Ψ, Φ:

Ld = D
2

ln|K| + 1
2
tr(K−1Y Y T + d

2
ln|Kx|+

1
2
tr(K−1

x (X̂ − X̃)(X̂ − X̃)T ) (7)
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Fig. 3. GPDM latent space for 5 views walking silhouettes.
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Fig. 4. GPDM latent space for local joint angles learned from 2
walking cycles.

The optimization will simultaneously generate the latent point X
and the mapping parameters. In the application of GPDM for sil-
houettes and joint angles, the points will be embedded in the latent
space Ls and Lj. In Figure 3, the 3D latent points of silhouettes for
each view are shown. The latent space for the learned joint angles
are shown in Figure 4.

Once the model is learned, the corresponding xj for a given new
input data yj can be obtained by solving the likelihood object func-
tion:

Lm(xj , yj) =
||yj − μ(xj)||2

2σ2(xj)
+

D

2
lnσ2(xj) +

1

2
||xj ||2 (8)

where

μ(xj) = μ + Y T K−1ϕ(xj) (9)

σ2(xj) = k(xj , xj)− ϕ(xj)
T K−1ϕ(xj) (10)

μ(xj) is the mean pose reconstructed from the latent point xj , σ2(xj)
is the reconstruction variance . μ is the mean of the training data Y .
ϕ(xj) is the kernel function of xj with training data. Given input yj ,
the initial latent position is obtained xj = argminxjLm(xj , yj).
Given xj , using equation (9), the high dimensional data ŷj can be
obtained too.

3.2. Regression Between Two Latent Spaces

Given the low dimensional representations of human poses Lj and
silhouettes Ls, the regression between Lj and Ls are learned using
sparse relevance vector machine(RVM)[7]. From Ls to Lj is back-
ward mapping and from Lj to Ls is forward mapping. RVM is also

one Gaussian process for classi cation and regression. The hyperpa-
rameters are introduced in RVM to control the weights W . This will
generate sparse non-zero weights compared with SVM. The detail of
the learning step can be found in [7]. In our training, the relevance
vectors account about 10% − 20% of the total data which will save
the computation resources.

4. TRACKING USING PARTICLE FILTER

We use the particle lter to track the 3D human movement. Let Ljt

be the latent point of Jt, the joint angles of 3D body pose. The state
is de ned as Ljt. Given the sequence of images I1:t, the evolution of
the distribution of the state is approximated by a particle lter with
importance sampling:

p(Ljt|I1:t) = wi
tLji

t (11)

where the importance weights of the particles are given by:

wi
t =

p(It|Lji
t)p(Lji

t |Lji
t−1)

q(Lji
t |Lji

t−1, It)
(12)

Particles are drawn from the proposal distribution q. We use the
proposal density as the mixture of two distributions.

q(Lji
t |Ljt−1, It) = αqbm(Ljt|It) + (1− α)p(Ljt|Ljt−1) (13)

where α determines the convergence of the proposal distribution to
the observation and in our experiment we use α = 0.5. qbm(Ljt|It) =
p(Ljt|Lst) is the distribution from backward mapping,where Lst is
the latent point of It.

Dynamics learned from GPDM are used for p(Lji
t|Lji

t−1). Be-
cause of the low dimensional space, we only draw 100 particles
from the proposal distribution. This saves the computation resources
greatly.

For the likelihood,

p(It|Lji
t) ∝ p(It|f(Lji

t)) = P (It|Îi
t) (14)

where f(Lji
t) = Îi

t is the mapped image features from Lji
t through

forward mapping. Assume the likelihood in visual input is Guas-

sian distribution P (It|Îi
t) =

||It−Îi
t ||2

2σ2
I

. Through this mapping, the

complex 3D human model is avoided.
Given the estimated result of Ljt, Jt will be obtained and the 3D

body pose will be inferred. For camera view estimation, given the
learned view-based manifolds for each view, determining the view
point reduces to nding the manifold that minimizes the mapping
error of a sequence of inputs I1:t. Given input sequence I1:t and
its projections Ls1:t, we chose the manifold that minimizes ||I1:t −
h(Ls1:t)||.

5. EXPERIMENTAL RESULTS

The proposed framework has been tested using both synthetic and
real image sets. The joint angle data for synthetic data generation
were from the CMU motion capture database [5]. The joint angle
includes 42 joints. A total number of 320 training silhouettes were
rendered using Maya with 5 viewpoints (uniformly placed on the
sphere equator centered at the hip of the body).

For the model learning, we use three dimensional embedding
space for both silhouettes Ls and local joint angle Lj because this
is the smallest dimension which we can use to discriminate different
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poses and learn complex motions. The learned GPDM trajectories
are shown in Figure 3 and 4.

Firstly we test the system using the synthetic data to evaluate
the accuracy of our tracking system. The mean RMS error between
the true and the estimated joint angles is used. We test one motion
sequence from a different subject not included in training and the 3D
model is different too. We test 5 views of the walking data which has
63 frames(2 walking cycles) for each view. The mean RMS errors
for different views are shown in Figure 5(a). The RMS error for
each frame of view 2 test sequence (shown in Figure 6) are shown in
Figure 5(b).
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Fig. 5. (a).The mean of RMS errors for test sequence with different
views. (b). Reconstruction pose RMS errors for each frame.

Some of the estimated poses for view 2 of the test sequence are
shown in Figure 6. The framework can track the walking well.

A real video (40 frames, two steps side view walking) are also
used to evaluate the proposed system. Due to the noise presented in
the video, the extracted silhouettes are not as clean as the synthesized
ones. However, the proposed approach can still produce perceptually
sound results. Some recovered poses are shown in Figure 7. From
frame 29 to frame 32 there is a jump for the leg movement because
of the capture reason. But the system still can estimate the correct
poses.

6. CONCLUSION

In this paper, we propose a framework to robust track the view-based
3D human movement using GPDM and particle lter. GPDM cap-
tures the structures of the silhouettes and motion joints in manifold
spaces. Those low dimensional spaces make the tracking more ef-
cient. The mapping between two low dimensional spaces are per-

formed using relevance vector machine. So better sampling scheme
and weight evaluation can be realized. Also no 3D model is needed.
The experimental results show that the framework can work for dif-
ferent subjects and noisy image observation.
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