
Deblurring by Example using Dense Correspondence

Yoav HaCohen
Hebrew University
Jerusalem, Israel

yoav.hacohen@mail.huji.ac.il

Eli Shechtman
Adobe Research

Seatle, USA
elishe@adobe.com

Dani Lishchinski
Hebrew University
Jerusalem, Israel

danix@cs.huji.ac.il

Abstract

This paper presents a new method for deblurring photos
using a sharp reference example that contains some shared
content with the blurry photo. Most previous deblurring
methods that exploit information from other photos require
an accurately registered photo of the same static scene. In
contrast, our method aims to exploit reference images where
the shared content may have undergone substantial photo-
metric and non-rigid geometric transformations, as these
are the kind of reference images most likely to be found in
personal photo albums.

Our approach builds upon a recent method for example-
based deblurring using non-rigid dense correspondence
(NRDC) [11] and extends it in two ways. First, we suggest
exploiting information from the reference image not only for
blur kernel estimation, but also as a powerful local prior
for the non-blind deconvolution step. Second, we introduce
a simple yet robust technique for spatially varying blur es-
timation, rather than assuming spatially uniform blur. Un-
like the above previous method, which has proven successful
only with simple deblurring scenarios, we demonstrate that
our method succeeds on a variety of real-world examples.
We provide quantitative and qualitative evaluation of our
method and show that it outperforms the state-of-the-art.

1. Introduction
Photographs often exhibit blur caused by camera defo-

cus, camera motion, or motion in the scene. Blind deblur-
ring, also known as blind deconvolution, refers to the prob-
lem of recovering a sharp image from a blurry one when
the exact parameters of the blur operator are not known.
Without any prior or additional information, this problem
is inherently ill-posed, as there are many possible combi-
nations of blur kernels and sharp images that can explain a
given blurry image. In this paper we address a challenging
variant of blind deblurring with unknown spatially varying
camera motion blur, while assuming the availability of a

sharp reference image containing some shared content un-
der unknown geometric and photometric transformations.

While recent single-image approaches based on general
priors or edge-based techniques [4, 6, 18, 21, 17] have
shown significant progress, blind deblurring remains a very
hard and ill-posed problem [20]. General assumptions may
result in an inaccurate blur kernel estimation and/or an in-
correct deblurred result. For example, the sparse deriva-
tives prior suggested by Levin et al. [19] is often used in the
(non-blind) deconvolution step to overcome artifacts due to
an inaccurately estimated kernel. However, being based on
generic natural image statistics, this prior biases the results
towards piecewise smooth solutions and thus tends to re-
duce fine detail.

Several approaches perform deblurring by leveraging
multiple photos of the scene [22, 27, 14]. While these
methods demonstrate the benefit of having additional data,
they require accurately registered photos that simultane-
ously capture exactly the same static scene. Although peo-
ple often shoot several photos in a succession, unless the
photos were taken intentionally to meet the requirements of
these methods, suitable input image sets are unlikely to be
found in personal photo albums.

Recently HaCohen et al. [11] presented the Non-Rigid
Dense Correspondence (NRDC) method for simultaneously
recovering a partial dense correspondence and a color trans-
formation between pairs of images with shared content.
NRDC was shown to be highly effective for finding large
matching regions in typical personal photo collections. One
of the applications demonstrated in [11] was deblurring
by example: given a pair of images, where one image is
sharp while another is blurry, NRDC was used to estimate
a blur kernel simultaneously with the correspondence and
the color transformation. However, this approach has been
successfully demonstrated only on simple synthetic deblur-
ring scenarios, involving simple blur kernels and no added
noise.

Our method extends the above approach to more re-
alistic scenarios, including real-world blur kernels, noise,
and real-world sharp/blurry image pairs with spatially vary-



ing blur. Similarly to [11], we employ an iterative opti-
mization scheme that alternates between finding correspon-
dences, estimating the blur kernel, and recovering the sharp
image with non-blind deconvolution. However, in order to
increase the accuracy and robustness of our method, we in-
troduce two key modifications: First, rather than exploiting
the sharp reference only for kernel estimation, we also use
this reference as a strong local prior for the non-blind de-
convolution step. Second, we suggest a new fast and robust
non-uniform blur kernel estimation method, which reduces
the effect of outliers resulting from inaccuracies at the other
steps.

After discussing relevant previous work (Section 2) and
presenting our deblurring algorithm (Section 3), we evalu-
ate our method and compare it to the state of the art deblur-
ring methods (Section 4).

2. Background and Related Work
Generally, the problem of removing uniform camera mo-

tion blur is modeled as the problem of estimating a sharp
latent image x given a blurry image y, related by an un-
known low-dimensional linear blur kernel k of size d with
some additive noise n (all bold notations vectorized):

y =

d∑
i=1

kiPix+ n (1)

where Pix are geometric projections of the latent image.
Each projection represents the image that the camera “saw”
for the ki portion of the shutter opening. If the classic
uniform convolution model is assumed [9, 19, 27, 23, 16,
4, 21], {Pi} represent translations in matrix form, and the
model can be written as a uniform convolution of k with
x. Recent works [10, 26, 13, 18] use richer models where
{Pi} correspond to a subset of geometric transformations
that better approximate the 6D camera motion (rotations
and translations). In this paper, we also assume a spatially
non-uniform blur model. Since both x and k are unknown,
the problem is inherently ill-posed, and therefore additional
prior or information must be used.

Recent single-image approaches for blind deblurring
have shown significant progress by using general image pri-
ors [9, 21, 18] and edge-based techniques [16, 4, 6]. In order
to recover both x and k most of these methods alternate be-
tween two main steps: First, updating the estimated sharp
latent image x (non-blind deconvolution), and second, up-
dating the blur kernel k. These two steps typically involve
solving equations of the form:

x = argmin
x

‖Akx− y‖+ ρL(x) (2)

k = argmin
k

‖Bxk− y‖+ ρK(k,x) (3)

where Ak =
∑d

i=1 kiPi is the blur matrix, Bx is a matrix
whose i-th column is Pix, and ρL and ρK are priors for the
latent image and the kernel, respectively.

For ρK , Yuan et al. [27] and Cho and Lee [4] use
Tikhonov regularization on the kernel (ρK = ‖k‖2), Shan
et al. [23] and Krishnan et al. [18] use ρK = ‖k‖1, and
Levin et al. [21] use the covariance around the estimated
image (which depends both on x and k) and a sparsity prior
on the kernel (ρK =

√
‖k‖0.5).

For the latent image prior ρL, researchers commonly
use a Gaussian prior [23, 4], or a sparsity prior [21, 18].
Cho et al. [7] suggested a deblurring method using region-
specific priors. The method estimates a prior for each re-
gion based on its texture characteristics at a coarser scale,
assuming scale invariance of such characteristics. Recently,
priors based on patch-banks have been proven effective in
reducing ringing artifacts [28, 24], but they might still lose
high frequency texture details due to the limited number of
example patches.

Despite the recent progress in single-image approaches,
their general underlying assumptions are commonly vio-
lated resulting in strong visual artifacts. Methods like
[23, 4, 21, 18, 7] that assume an objective gradient distri-
bution (globally or locally), may fail when the gradient dis-
tribution of the true result is not as expected. Thus, their re-
sults are often not suitable for practical personal use, with-
out further manual processing or image-specific tuning of
many parameters.

Other approaches assume the existence of another accu-
rately registered image of the same static scene, but blurred
by a different kernel [22, 3, 1, 14] or containing noise
[27], for estimating a blur kernel. Yuan et al. [27] use a
noisy image taken from the same viewpoint as a prior for
the non-blind deconvolution step, but only for recovering
the low-frequencies of the latent image, leaving the high-
frequencies prone to ringing and noise. Rav-Acha and Peleg
[22] simultaneously deconvolve two registered images of
the same static scene, each blurred by a different directional
blur kernel, assuming the results should be equal (thus each
image serves as a prior for the other). These approaches
have shown the benefit of using additional images for im-
age deblurring. However, they require accurately aligned
input images which are not typically available in personal
photo collections.

Several methods have attempted to abolish the require-
ment of registered images for deblurring. Ancuti et al. [2]
use SIFT features to match between a blurry and a sharp
image of a static scene. Joshi et al. [15] use photos of faces
of the same person with a similar pose. HaCohen et al. [11]
simultaneously deblurs and computes a partial dense corre-
spondence between the blurry input image and a sharp refer-
ence, where the resulting correspondence is more dense and
robust than previous methods. Cho et al. [5] removes blur



in video frames due to camera shake using patches sam-
pled from nearby sharp frames. While our local prior is also
based on reconstruction using sharp patches, our method in-
terleaves finding correspondence, local prior and kernel es-
timation in an optimization framework and thus can handle
more complex motions and blur kernels.

As already explained in Section 1, we introduce two im-
portant improvements to the approach described in [11],
making it applicable to a much wider variety of deblurring
scenarios and real-world image pairs. In particular, to the
best of our knowledge, our method is the first to use an ad-
ditional image as a local prior when estimating the latent
sharp image, without requiring an accurate full registration
between the images.

3. Method
Similarly to HaCohen et al. [11], we iteratively alternate

between computing a dense correspondence, estimating the
kernel, and estimating the latent image, while proceeding in
a coarse-to-fine manner. However, there two crucial differ-
ences with respect to [11]: (i) we use the sharp reference
image not only for blur kernel estimation, but also as a lo-
cal prior for latent image recovery (Section 3.1); (ii) we ro-
bustly estimate a spatially varying blur kernel instead of a
uniform one (Section 3.2).

Each iteration begins by applying the basic NRDC
matching step [11], i.e., finding an approximate nearest
neighbor field followed by aggregation of coherent regions,
to obtain a dense correspondence between the sharp refer-
ence image r and the current latent image estimate x. The
resulting correspondence consists of: (i) a geometric pixel-
wise mapping M from r to x; (ii) an associated confidence
map w that indicates the reliability of this mapping at each
pixel using values between zero and one; and (iii) a para-
metric color transformation C between x and rM , where
rM is the reference image r geometrically transformed by
M . Next, we estimate the blur kernel k from the pair of
sharp and blurry images given by rM and C(y) (section
3.2). Finally, we use the estimated kernel k, and a local
prior given by the partial reconstruction of the latent image,
C−1(rM ), to update our latent image estimate x (section
3.1). Several such iterations take place at each scale. These
steps are summarized in Algorithm 1.

To update M and w in each iteration (line 6 of Alg. 1)
we use the previous estimates of M and x to initialize and
to constrain the matching step. However, a known limita-
tion of NRDC (shared by many other matching algorithms)
is the lack of reliable matches inside large smooth regions.
Note that in order to generate the kernel estimation equa-
tion (3) we need an entire neighborhood around each pixel
of rM . Thus, while a small number of matches is not an is-
sue for other applications of NRDC, in our case, we may be
left with too few usable pixels for estimating the blur ker-

Algorithm 1 DeblurByExample(r,y)
1: Initialize x = y
2: [M,w, C] = MatchNRDC(r,x) at the coarsest scale
3: for scale = coarse to fine do
4: for several iterations do
5: k = EstimateKernel(rM , C(y)) (Sec. 3.2)
6: x = Deconvolve(y,k, C−1(rM ),w) (Sec. 3.1)
7: [M,w] = MatchNRDC(r,x) at the current scale
8: Fill smooth holes in M
9: Fit a color transformation C between x and rM

10: end for
11: upscale M and w
12: end for

nel. In order to avoid this problem, we fill smooth unreli-
ably matched regions inM by interpolating the missing val-
ues from nearby reliably matched values. Specifically, we
detect regions of adjacent pixels where the matching confi-
dence w is low. We consider such a region as smooth if it
contains only pixels with gradient magnitudes below some
threshold. We then interpolate the mapping values inside
such regions from nearby reliable matches by scattered data
interpolation using the method of [8]. The effect of the hole
filling step is demonstrated in Figure 1.

Note also that unlike many other coarse-to-fine deblur-
ring methods (e.g., [11, 4, 21, 18, 26]), we do not upscale
the kernel k when switching from a coarser scale to a finer
one. We found that any small interpolation/upsampling er-
ror in the kernel might result in large deconvolution arti-
facts. Instead, we upscale the mapping M and use it to
recompute k and x at the next, finer, scale.

3.1. Latent image estimation

Given the blur kernel k, a naı̈ve way of obtaining the
deblurred image would be to invert the kernel by solving
Eq. 2. This often results in severe artifacts, such as ringing,
because Ak is usually not well-conditioned; other sources
for such artifacts might be inaccuracies in the estimate of
k, presence of noise, or other violations of the blurry image
formation model.

To reduce these artifacts, the popular deconvolution ap-
proach of Levin et al. [19] introduces into the equation a
sparse prior motivated by natural image statistics:

x = argmin
x

‖Akx− y‖2 + λ
∑
f

‖Tfx‖0.8, (4)

where {Tf} are Toeplitz (convolution) matrices correspond-
ing to a set of derivative filters {f}. This prior penalizes
small gradients, thereby encouraging piecewise smooth so-
lutions.

However, while being commonly used, the sparse prior is
still too generic and often overcomes ringing artifacts only



(a) blurry input (b) reference (c) with holes (d) after hole filling (e) final result
Figure 1. (c) and (d) compare the reconstructed image rM with and without step 8 (hole filling) of Algorithm 1. The confidence map w
(not shown) has high values where the colors in (d) are reconstructed and zero values otherwise; (e) is our final deblurred result.

at the price of overly (piecewise) smoothed results. Our ap-
proach is to leverage the existence of the sharp reference im-
age r, and the availability of a dense mapping M between r
and the blurry image y, to augment the generic sparse prior
with a local non-parametric one, which we refer to as the
reconstruction prior. This is only done in regions where we
believe that we can reliably estimate x by the transformed
reference image rM . Specifically, we use a linear combi-
nation of the two priors, where the relative weight of each
prior is determined by the confidence associated with the
reconstruction of each pixel.

Formally, we add a term that minimizes the difference
between the result and the reconstructed image:

x = argminx ‖Akx− y‖2
+ λ1(I −D)

∑
f ‖Tfx‖0.8

+ λ2D
∑

f ′ ‖Tf ′x− Tf ′C−1(rM )‖2
(5)

where D is a diagonal matrix whose entries represent the
reliability of the local prior at each pixel. Note, that beyond
the obvious effect of this local prior on the pixels where it is
applied, it also affects their neighborhood due to the mutual
influence of adjacent pixels introduced by the first and the
second term of Eq. 5.

The confidence map w associated with the mapping M
is determined by the consistency of the matching, but it
does not guarantee that the reconstruction rM is consis-
tent with the blurry input image (i.e., some elements of
‖AkC

−1(rM ) − y‖ may be large). Therefore, we refine
w by estimating the image regions where we can reliably
estimate x using the transformed reference image rM . This
is done by defining the i-th element of the diagonal of D
based on rM , C, y and k as follows:

Di,i = wi exp

(
−
‖AkC

−1(rM )i − yi‖2

σr

)
(6)

where σr is a constant.
In practice, we use the gradients of y and C−1(rM )

rather than their intensity values in Eq. 6, having found it
more robust to errors in C. A value of σr = 0.01 was used
to produce the results in the paper. To solve Eq. 5, we use
iteratively reweighed least squares (IRLS), with Conjugate
Gradient for solving the inner iterations. We use 15 IRLS
iterations and a maximum of 25 CG iterations.

3.2. Non Uniform Kernel Estimation

3.2.1 Kernel estimation

If the estimate of the latent image x is correct up to some
additive Gaussian noise, the optimal kernel k can be recov-
ered by minimizing an objective function similar to Eq. 3
[4, 21, 18, 26, 10]. In single image deblurring methods, x
is initially unknown so it is often approximated using edge
prediction techniques ([4, 16, 6]) that rely on the existence
of strong edges at multiple orientations. ρK(k,x) is a prior
on the kernel values and may be a function of the image x.

When a sharp reference image r exists and a correspon-
denceM is established, we can replace x with rM at regions
of high correspondence confidence as follows:

k = argmin
k

‖W (BrMk− C(y))‖2 + ρK(k,x) (7)

where we also replace y by C(y) (to compensate for the
photometric differences between r and y), and weight the
differences with a diagonal matrix W whose main diagonal
is the correspondence confidence w.

We will now describe our blur model ({Pi}) and the prior
ρK(·) that we use to regularize the kernel k.

3.2.2 Non-uniform blur model

Many deblurring algorithms assume that the blur function
(i.e. Ak =

∑
i kiPi) is a translation invariant (convo-

lution) matrix. Recent work by Whyte et al. [26] and
Gupta et al. [10] showed that general blur caused by 6D
camera motion cannot be accurately represented by a trans-
lation invariant kernel and proposed spatially varying ap-
proaches. However, a recent review of deblurring algo-
rithms [17] showed that the uniform translation-invariant
blur model performs generally better than the spatially-
varying models for large kernels, and not much worse
when strong camera rotation was involved. Methods like
[26, 10] are inherently less robust due to the large num-
ber of unknowns involved in the discretization of the multi-
dimensional camera motion.

Motivated by this review and the approximation in [13,
12], we suggest a simpler model where each block has its
own translation-invariant kernel but this kernel must not be
too different from those of the adjacent blocks. Thus, we



Figure 2. An example for an improvement by using our non-
uniform model applied on the top example in Fig. 5 (zoom on
lower left corner). Left column: Our method with a single block
(uniform model). Right column: Our method applied with the de-
fault 12 blocks.

model the blur as a set of convolution kernels, each esti-
mated inside a different block (tile) of the image, while cor-
responding coefficients of kernels from adjacent blocks are
regularized to be similar. Formally, we define the blur func-
tion as Ak =

∑
b,i,j kb,i,jPb,i,j where Pb,i,j denotes a ma-

trix that offsets the image block b by (i− cx, j − cy) pixels
while zeroing the rest of the image (cx and cy are defined as
half of the kernel dimensions).

Inspired by [12], the similarity between adjacent kernels
is achieved by using the following prior in Eq. 7:

ρK(k,x) = λ3
∑
b,i,j

∑
b′∈N (b)

|kb,i,j − kb′,i,j |2 (8)

where N (b) is the set containing the indices of the blocks
adjacent to b, and λ3 is a weighting constant.

Our model’s expressiveness depends on the number of
blocks being used, and the weight of the connectivity prior
between them. We found that using 3 × 4 blocks with
λ3 = 5 achieves a good balance between robustness and
flexibility in all of the examples we have tried. Figure 2
demonstrates the contribution of our non-uniform model on
one of our real world examples.

4. Evaluation and Results
We implemented our method using a combination of

matlab and C++. The entire deblurring process (including
the non-blind deconvolution step) takes about 1–2 minutes
for 1024×768 images on a 2.3GHz Intel Core i7 (2820qm)
MacBook Pro. Note that in addition to the deblurred re-
sult, the process also yields a partial dense correspondence
between the two images, as well as a global color transfor-
mation between them.

We evaluate our method using the error metric proposed
by Levin et al. [20] for quantitatively comparing deblurring
methods. The metric assumes that the ground-truth blur ker-
nel kgt and sharp image xgt are both known, and computes
the error between the deblurring result xout and xgt. This
error is normalized by the error between the deconvolution
with the ground-truth kernel xkgt

and xgt, resulting in the

error ratio: ‖xout − xgt‖/‖xkgt − xgt‖. An error ratio of
1 is ideal, while higher ratios indicate less accurate results.
Furthermore, Levin et al. observed that error ratios above 2
are often visually implausible.

We use the 8 ground truth kernels extracted by Levin
et al. [20] from real-world blurry photos. Although a dataset
of 32 test images is also provided, we could not use this
dataset since it does not include the reference images re-
quired by our approach. Hence, we used our own dataset,
constructed from 5 color image pairs. These pairs were
collected from personal photo albums and were not delib-
erately captured with our method or experiment in mind.
One image from each pair was blurred with each of the 8
kernels, resulting in 40 test images, while the remaining 5
images serve as the sharp references. We added Gaussian
noise with σ = 1% to each of the blurry images.

Figures 3 and 4 compare our method with three state-of-
the-art single-image deblurring methods. The two-image
deblurring methods of [22, 27] were not tested as they both
require a pair of registered images of the same static scene,
and [22] was designed for 1D motion blur only. The NRDC-
based deblurring method of HaCohen et al. [11] was tested
as well (using the authors’ original implementation). How-
ever, it failed to find any correspondences on almost all of
the 40 blurry test inputs, which were generated using com-
plex real-world kernels, and therefore its results are not in-
cluded in Figures 3 and 4.

Following [20], in Figure 3 we plot the cumulative error
ratio (CER), where higher accuracy methods correspond to
higher curves. As demonstrated by these plots, our method
outperforms the other three methods that we compared to.
Note that for most of the tested images the error ratio of our
deblurring results is below 2. Figure 4 shows a visual com-
parison of our results to those of the other three methods on
several different test cases from our dataset.

We also tested our method on several real-world image
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Figure 3. A quantitative comparison with several state-of-the-art
single-image deblurring methods: Levin et al. [21], Krishnan et al.
[18], and Cho and Lee [4]. Our method outperforms the other
methods.



reference blurry input Cho & Lee ’09 Krishnan ’11 Levin ’11 our result

Figure 4. Example results from our test dataset. From left to right: sharp reference; blurry input image (with ground truth kernel superim-
posed); Cho and Lee [4]; Krishnan et al. [18]; Levin et al. [21]; our result. The odd rows show a deblurred result (with the recovered blur
kernel) and the even rows show an enlarged portion of the deblurred results.

pairs, where one image exhibits significant blur, but a sharp
reference is available that shares a significant portion of the
visible content. Figure 5 shows our results on five such ex-
amples and compares them to three state-of-the-art single
image deblurring methods. We also show the blur kernels
recovered by each of the methods superimposed over the
deblurred results. For our method, as well as that of Whyte
et al. [25], which recover a non-uniform blur kernel, we su-

perimpose the four kernels recovered near the corners of the
image. Our method produces fewer visual artifacts and re-
constructs fine detail better than the other methods. Similar
qualitative advantages over additional methods is shown in
the project webpage.

Limitations. The photometric and geometric variations
that we can handle are similar to those of NRDC [11] and



reference blurry input Whyte ’11 Levin ’11 Sun ’13 our result

Figure 5. Five real-world sharp/blurry pairs. From left to right: sharp reference; blurry input image; Whyte et al. [25]; Levin et al. [21];
Sun et al. [24]; our result. The odd rows show a deblurred result with the recovered blur kernel(s) and the even rows show an enlarged
portion of the deblurred results.



are discussed there in detail. As a result, content with ex-
treme differences (e.g. day vs. night) will not be matched,
as the search domain for similar patches is limited to a fixed
range of color variations. Another limitation is that a good
kernel estimation at one scale is required for correspon-
dence at the next scale. Thus, the shared content must be
large enough to be matched at the coarse scales. A possible
workaround is to initialize the algorithm with a single image
deblurring result at a finer scale. A third limitation is that
the local prior can be used only for regions that are available
in the reference image. Otherwise, our method will degrade
gracefully by using the sparse prior. The sparse prior it-
self could be replaced with a more advanced image prior
(e.g., [28, 24].

5. Conclusions and Future Work
We have presented a new method for deblurring pho-

tos using a sharp reference image that may often be found
in personal photo collections. We have demonstrated that
when a suitable reference exists, our method outperforms
the state-of-the-art single image deblurring methods, while
no other method can generally exploit such different exam-
ples for deblurring. Promising future research directions
may be to further extend our method to more general blur
models, (e.g. object motion blur), and using similar content
from example images as a prior for non-shared regions.
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