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Abstract

Supplementary materials for the ICCV paper titled
Affine-Constrained Group Sparse Coding and Its Applica-
tion to Image-Based Classifications.

1. Optimization Details
The optimization of the convex objective function
E(a,¢;X,D) = [ Xa—Dc|* + A¢(c) (1)
subject to the nonnegative affine constraint

k
Z a; =1, aj,...,ap 20, (2)

i=1

is straightforward. The regularizer 1 (c) is a block-based
{1 /€s-norm. We note that ”a”-part of the objective function
gives a quadratic program with linear constraints (equality
and inequalities), while the c-part of the objective function
is the same as the typical convex program solved in sparse
coding [3]. We use block-coordinate descend with two
coordinate-blocks a and c. The affine constraint is on a
and after each descent step on a, we project the current a
onto the simplex Zle a; =1,a1,...,ar > 0. With appro-
priate step size, this block-coordinate descent algorithm is
guaranteed to converge [1].

Projection onto Simplex The only part of the optimization
that needs elaboration is the nonnegative affine constraints
Zle a; = 1,ay,...a; > 0. For this, we follow the recent
work on simplex projection presented in [2]. Let a € R”
and define its projection a on the simplex A™ as

a=arg TrgiAr}L la— x|
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The main result in [2] shows that this projection can be com-
puted quite easily using a shrinkage-like operation,

a=(a—b)",

where (a — b)™ denotes the positive part of a — b, and the
components of the vector b € R” is determined uniquely
by the components of a (See Theorem 2.2 in [2]).
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