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Abstract

In this supplementary document, we provide proofs of two propositions in Section 1 and Section 2 to support the claims in
the main paper; describe how the video in the zip file showcase the experimental results in Section 3.

1. Proof of Proposition 1
Proposition 1. Solving the objective function Eq. (1) of the main paper in the 2nd-order tensor case is equivalent to solving
the following constrained optimization problem:

minimize
U,V

∑
i,j

∥∥UTXiV −UTXjV
∥∥2
F
Wij ,

subject to
∑
i,j

∥∥UTXiV −UTXjV
∥∥2
F
W p

ij = d
(1)

where UT = M1, VT = M2, and d is a constant.

Proof. Let M1 = UT ∈ Rl1×m1 , M2 = VT ∈ Rl2×m2 , where l1 < m1, and l2 < m2. Consider Yi = Xi ×1 M
1 ×2 M

2.
In the 2nd-order tensor case, the mode-1 flattening of the tensor A is A(1) = A and the mode-2 flattening is A(2) = AT .
Denote Xi ×1 M1 as the tensor T . Then, T can be computed by matrix multiplication T(1) = M1Xi(1) = UTXi,
followed by retensorization for mode-1 folding. That is to say, T = UTXi. Likewise, Yi can be computed by matrix
multiplication Yi(2) = M2T(2) = VTT T , followed by retensorization for mode-2 folding. Then, Yi can be rederived as:

Yi =
(
Yi(2)

)T
=
(
VTT T

)T
= TV = UTXiV.

2. Proof of Proposition 2
Proposition 2. Let D and Dp be diagonal matrices, where Dii =

∑
j 6=i Wij and Dp

ii =
∑

j 6=i W
p
ij . The optimization

problem Eq. (1) in this supplementary material can be reformulated as either of the following two optimization problems:

min
U,V

tr

(
UT (DV −WV )U

UT (Dp
V −W

p
V )U

)
or min

U,V
tr

(
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VT (Dp
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p
U)V

)
, where DV =

∑
i DiiXiVVTX T

i , WV =
∑

i,j WijXiVVTX T
j ,

Dp
V =

∑
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∑
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∑
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∑
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i UUTXj ,
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∑
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p
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∑
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p
ijX T

i UUTXj .



Proof. In the 2nd-order tensor case, Yi = UTXiV. Since ‖A‖2F = tr
(
AAT

)
for a 2nd-order tensor A, we see that:
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)
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, where Dp
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Similarly, ‖A‖2F = tr

(
ATA

)
for a 2nd-order tensor A, so we also have:
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)
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Finally, the optimization problem Eq. (1) in this supplementary material can be reformulated as either of the following

two optimization problems:

min
U,V

tr

(
UT (DV −WV )U

UT (Dp
V −Wp

V )U

)
or

min
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(
VT (DU −WU )V

VT (Dp
U −Wp

U )V

)

3. Video to Showcase the Experimental Results
The video in the zip file showcase the experimental results with respect to two aspects: i) the effectiveness of our approach;

ii) comparison with competing trackers.
In the first part, we use six videos to verify the conclusions in Section 3.1 of the main paper.

• TDT can’t handle the challenges in scale variation (e.g. david, woman), background clutter (e.g. football), fast motion
and blur (e.g. animal) well;

• SSI-VDT still can’t meet the challenges caused by the presence of occlusion (e.g. coke11, football, woman), fast
motion and blur (e.g. animal) well;

• SSI technique and MI technique are not required in the coke11 video;

• SSI technique can still enhance TDT in the sylv video, although TDT achieves good results in this video.

In the second part, we also use six videos to verify the conclusions in Section 3.2 of the main paper.

• Frag, APG-`1 and SSOBT are easily confused by the impostor object in the dollar video;

• SSI-TDT outperforms the other approaches significantly when heavy occlusion and pose variation appear simultane-
ously (e.g. woman, coke11, skating1);

• IVT can capture appearance variations due to scale change (e.g. david) and background clutter (e.g. dollar);

• VTD and VTS achieve good results over the david, skating1 and sylv videos, however they achieve higher tracking
errors and lower success rates than our approach.


