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In this supplemental material we present additional de-
tails about our paper. Section 1 provides a more thorough
discussion of the Weak-Label Structural SVM used for our
viewpoint-aware detector. Section 2 details how we compute
the 3D pose of each vehicle hypothesis in the geographic
context rescoring stage of our pipeline. Finally, Section 3
provides a few examples illustrating the complexity of our
NYC3DCars dataset. Please refer to the included video for
a recorded annotation session, as well as additional illustra-
tions of our dataset and evaluation.

1. Weak-Label Structural SVM

This section provides a more detailed overview of the
Weak-Label Structural SVM (WL-SSVM) as used in our
baseline viewpoint-aware vehicle detectors. We begin with a
definition of the WL-SSVM, as a recap of [3], followed by
a discussion of its high-level goals. Next, we describe the
optimization procedure used in training. Finally, we provide
implementation-specific details. For an authoritative account
of the WL-SSVM, please see Girshick et al., Sections 3 and
4 [3].

Definition. Let X’ be an input space, ) be a training label
space, and S be a prediction space, where ) is not neces-
sarily equal to S, as is the case with weakly labeled data
(i.e., where certain types of annotations may be missing; in
our case, some training data may not come equipped with
viewpoint annotations, for instance.) We begin with a clas-
sification function mapping inputs in X to predictions in
S:

f(z) = argmax w - ®(x, ) (1)
seS(x)

where ®(x, s) is a joint feature map dependent on both the

input, z, and the prediction, s. w is a vector of model param-

eters, and the goal of training is to learn these parameters.
The WL-SSVM is defined by the training problem
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where
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The goal of this objective function is to encourage the max-
imizer of 3a to be a bad prediction and to encourage the
maximizer of 3b to be a good prediction so that the score
associated with 3a is pulled down below the score associ-
ated with 3b. This notion of “goodness” is task-specific.
For example, as we will show in the next section, there are
choices for these two loss functions that are strict in their
definition of goodness, in that the prediction must match the
label exactly. However, one can also encode some leniency
into these loss function, which is necessary when working
with weakly-labeled data.

Discussion. In order to provide some intuition about this
general objective function, we first describe how to represent
the special cases of the Structural SVM and then the Latent
Structural SVM using the WL-SSVM framework. Then we
will revisit our viewpoint-aware loss functions, Lyargin (¥, S)
and Loyput (Y, §), defined in the paper, and discuss how they
impact our optimization problem.

As a reminder, our training labels are defined as y =
(v, yb,y") € Y where y' € {+1,—1} indicates a pos-
itive/negative example, y* € R* is a 2D bounding box,
and y¥ € {1,..., K, @} is a viewpoint class. Our predic-
tions are similarly defined as s = (s!,s%, s¥) € S where
st € {+1,-1}, s* € R* and s* € {1,...,K}. Our
viewpoint-aware loss function, Lyiew (Y, s), is defined



in the paper as
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where overlap(y?, s*) = szgib” We use Linargin(y, 8) =

Lvicw,1,0.5(y7 S) and Loutput(ya ) = Lvicw,oo,O.'?(ya 3)-
This choice of Loytput (Y, s) means the maximizer of 3b
must have a correct viewpoint prediction and must have
a bounding box overlap of more than 0.7. The choice of
Ly argin (Y, s) means the maximizer of 3a might have a view-
point misclassification or poor localization and when this is
the case, the score of this prediction be pulled down below
the score of 3b’s maximizer.

The Structural SVM (SSVM) training objective function
is defined in [4] as:
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and L : Y x Y — R, is aloss function measuring compati-
bility between training labels and predicted labels. Note that
the label and prediction spaces are equal in the traditional
formulation of the SSVM, thatis S = ). It is easy to encode
this in the WL-SSVM framework by taking

Lmargin (y7 ?3) = L(y7 ?J) 3
0 5
Loutput (y7 :g) = {OO Z 7& ZZ; (9)

In short, the choice of Loytput (Y, §) forces 3b to choose only
assignments with predictions that equal the training labels.
However, the SSVM has two shortcomings. First, our
label space does not equal our prediction space. Some train-
ing labels do not include viewpoint, whereas we require all
predictions to include viewpoint. Second, for one particular
label, there might be many compatible predictions. In our
case, the goal is to build a classifier where the car or not
car prediction is primary and the viewpoint prediction is
secondary. This is subtly different from posing the problem

of viewpoint-aware vehicle detection as a multiclass problem
where each view is a separate class, trained independently
using opposing viewpoints as negative examples.

Another special case of the WL-SSVM is the Latent Struc-
tural SVM (LSSVM). This problem is defined by the training
objective
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and L : Y x (¥ x Z) — Ry. Similar to the SSVM, the
LSSVM can be encoded as a WL-SSVM with

Lmargin(ya (gv 2)) = L(yv (Qv 2)) (12)
0 y=49

Loutput(ya (gv 2)) = { Y % (13)
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This formulation addresses one of the aforementioned prob-
lems, namely that we are now able to apply a loss using
latent variables as opposed to just the binary label variables.
However, this strict Loytpu Still prevents us from consid-
ering cases where the prediction doesn’t match the label
exactly as being a good prediction.

The WL-SSVM loss functions above overcome both is-
sues. First, Loutput 1S not only dependent on the class pre-
diction, yl, but also the secondary predictions, yb and y"°.
Second, it supports ) # S.

Implementation. The implementation of the system used
in our paper is based off of the voc-releaseS system [2]. In
particular, we made modifications to the loss adjustment
functions and the loss pyramid. We used all default settings
except for the number of loss-adjusted detections used in the
convex step of the concave-convex optimization procedure.
Please see [3] for the details of this procedure. We used
the value recommended in [3], M = 1, of loss-adjusted
detections mined from positive training examples. When
M = 0, this system reduces to using the Latent SVM of [1]
which is what we use to report LSVM results. In our case,
both LSVM and WL-SSVM training procedures are identical
until a final round of training is performed. This final round
consists of one positive relabeling phase followed by five
iterations of negative data mining. The difference is that the
LSVM used M = 0 and the WL-SSVM used M = 1 in
this final round. Therefore, both methods receive the same
number of training iterations.



2. Vehicle Pose Estimation

The 3D vehicle pose estimation stage used in our geo-
graphic context rescoring algorithm (Section 5 of the paper)
requires solving for four pose parameters, given a 2D de-
tection and a exemplar car 3D model. A 3D vehicle pose,
0, is parameterized as ¥ = (vg, v, Vg, Ve) Where (vg, vy)
denotes the geodetic coordinates (latitude and longitude) of
the vehicle on the Earth’s surface, vy is the rotation of the ve-
hicle about the scene’s local up vector, and v is the elevation
of the vehicle with respect to our world coordinate system’s
vertical datum. This section describes how we convert a 2D
bounding box and viewpoint class, produced by our baseline
detector, to a set of hypothesized 3D vehicle poses.

Orientation. We start by computing orientation, vg. The
viewpoint class (discretized azumithal angle) given by the
2D detection is combined with the camera’s rotation about
the scene’s up vector (i.e., the camera heading) to obtain the
rotation of the vehicle in world coordinates.

3D position. The second step is to jointly solve for suitable
values of (vy,vy) and v, (i.e., latitude, longitude, and ele-
vation). The goal is to place the 3D vehicle in a location
such that the projection of its 3D bounding cuboid tightly
fits the 2D bounding box on the image plane. Because this
projection may not match the aspect ratio of the 2D bound-
ing box exactly, we estimate two positions, one where the
top and bottom of the projection of the (vehicle-aligned)
3D bounding cuboid touch the top and bottom of the de-
tection frustum, and one where the left and right edges of
the projection of the 3D bounding cuboid touch the left and
right sides of the detection frustum. These two positions,
illustrated in Figure 1, are then averaged together to yield
a final position. We estimate one such translation for each
3D vehicle class exemplar (each of which has a different 3D
bounding cuboid). The exemplars we use include a sedan,
pickup truck, minivan, SUV, Jeep, and a hatchback.

3. Dataset Examples

To illustrate the content of NYC3DCars, we show a selec-
tion of photographs from the dataset and several examples of
3D annotations. These examples demonstrate the diversity of
the dataset, as well as the utility of our annotation interface.

Figure 2 shows several photos in our dataset, along with
annotations showing the camera orientation as solve for by
structure from motion (SfM). Figures 3, 4, and 5 include the
input photograph with 2D bounding boxes for each anno-
tated vehicle as well as a map depicting the camera frustum.
Additionally, several example vehicles with 3D models are
presented for each photograph. Finally, Figure 6 shows ex-
amples of cropped, annotated vehicles from various photos.

Figure 1. Vehicle 3D pose estimation. Top: A detection’s bound-
ing box. The rays labeled T', B, L, and R pass through the centers
of the 2D bounding box sides. Middle: 7" and B intersect the cen-
ters of the top and bottom faces of the 3D bounding cuboid. Bottom:
L and R intersect the extremal points of the rotated 3D bounding
cuboid. These two poses are averaged together to get the final pose.
The 3D exemplar illustrated here is the “sedan” exemplar.
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Figure 2. Example photos from NYC3DCars. The images in our dataset represent a wide variety of viewpoints (e.g., top-down vs.
ground-level), times (e.g., day vs. night), weather conditions (sunny vs. rainy vs. snowy), and levels of clutter and occlusion (e.g., crowded
photos). Here, each photo is shown annotated with viewpoint information derived from SfM, including a red line showing the horizon, and a
set of axes showing global orientation (red: east, green: north, blue: up).
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Figure 3. Example 1. A wide-angle daytime photograph. The photograph is annotated with bounding boxes around each labeled vehicle,
and several 3D ground truth labeled car poses are shown underneath. The estimated pose of the camera is shown in the overlay at the top left.

Note that even with a large degree of perspective distortion, the labeler was able to accurately annotate the photograph, because we use the
recovered camera intrinsics in the 3D annotation tool.
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Figure 4. Example 2. A daytime photograph exhibiting a wide variety of occlusion patterns including vehicle-vehicle occlusion and

vehicle-pedestrian occlusion.



Figure 5. Example 3. Nighttime photograph facing south. The photographer is standing on the bleachers in order to capture this elevated
shot. Note that the unannotated vehicles on the left are limousines (labelers were requested not to annotate such vehicles).



Figure 6. Annotations queried by viewpoint. The most closely matching 24 annotations are shown, based on viewpoint similarity to two
query viewpoints. Top: Vehicles viewed from the front right. Bottom: Vehicles viewed from behind.



