
Nested Shape Descriptors - Supplementary Material

Jeffrey Byrne and Jianbo Shi
University of Pennsylvania, GRASP Lab

{jebyrne, jshi}@cis.upenn.edu

Figure 1. Taxonomy and comparison of local feature descriptors.

1. Related Work
A taxonomy for comparing and contrasting local feature

descriptors can be described in terms of five criteria: pre-
processsing, support, pooling, normalization and descriptor
distance. Preprocessing refers to the filtering performed on
the input image, support patterns are the geometric struc-
ture used for constructing the descriptor and pooling is the
aggregation of filter responses over the support structure.
Figure 1 shows this taxonomy and a comparison of domi-
nant local feature descriptors.

2. Nested Shape Descriptors
2.1. Examples

Figure 2 shows an example of the nesting property.
A nested shape descriptor exhibits nesting in two ways,
Hawaiian earring nesting and cocentric nesting. An Hawai-
ian earring is a geometric structure formed by the nesting
of a set of circles that intersect at exactly one point. The
gray opacity in this figure shows that the inner circles are
fully contained within the outer circles. Cocentric nesting
is formed by a set of nested circles that have the same cen-
ter. These nesting concepts will be used to construct the
nested shape descriptor in this section.

Figure 3 shows an example of the log-spiral pattern

Figure 2. Nesting property of the nested shape descriptor. (left)
Seed of life, (middle) Hawaiian earring, (right) Cocentric nesting.

Figure 3. Logarithmic spiral property of the nested shape descrip-
tor provides normalization and binarization. (right) The log-spiral
and it’s reflection shown in grey form an elegant flower-like struc-
ture.

formed by neighboring supports. The sequence of grey cir-
cles with centers and radii at left follow the logarithmic spi-
ral shown in green in 3 (middle). Combining this log-spiral
with it’s reflection (right) forms an elegant flower like struc-
ture used for normalization and binarization.

Figure 4 shows nested shape descriptors computed for
seed-of-life K1 −K10. These examples show the rotational
symmetry as lobes are added.

2.2. Definitions

In this section, we provide the formal definitions of the
Hawaiian earring used to construct the nested shape descrip-
tor.

First, preliminary notation. Let I be anM×N greyscale
image containing pixels p ∈ I with greyscale value I(p).

Definition 2.1. A support S at c is S = {p| p ∈ I, ||p −
c||2 ≤ r}

This defines a support. Observe that a support is a set



Figure 4. Nested shape descriptors with increasing lobes. (top row) K1 −K5, (bottom row) K6 −K10.

of all pixels within a given radius of a center pixel c. For
example, each circle in figure 2 is a support.

Definition 2.2. A nested support set at p is a set of supports
Sp = {Si| ri−1 < ri, p ∈ Si, i ≤ n} and S1 = {p},
Sn = {I}.

This defines a nested support set. A nested support set is
an ordered set of supports, such that each support contains
the element p and smaller supports are contained within
larger supports. Formally, inner support region are strict
subsets of all outer support regions, S1 ⊂ S2 ⊂ . . . ⊂ Sn,
radii are totally ordered such that r1 ≤ r2 ≤ rn and p is
contained in each support Si. The set of grey circles shown
in figure 2 (middle) form a nested support set.

The definition of the nested support set implies two use-
ful properties. First, A nested support set is precise. It fol-
lows from definition (2.2) that the smallest radius r1 = 0
since the innermost support K1 must contain only p. This
definition implies that there exists exactly one point p that is
in all supports Si. This property enables precise pixel level
alignment of the nested descriptor for a large support set.
Second, a nested support set is bounded. The largest sup-
port region Sn contains the entire image, which implies that
rn−1 < max(M,N) and rn >= max(M,N). This pro-
vides a requirement that the largest support must include
the entire image to provide global descriptor properties.

Definition 2.3. An Hawaiian earringK(θ) is a nested sup-
port set S such that for each support set Si ∈ S, ri = 2i and
ci = (2i−1, θ) in polar coordinates.

This defines a specific case of a nested support set called
the Hawaiian earring. Each support in the Hawaiian ear-

ring have exponentially increasing radius, the center of each
outer circle is on the boundary of the inner circle and all
share exactly one common point at the boundary of all cir-
cles. The centers of each support are defined in polar coor-
dinates, such that θ is the orientation of the line intersecting
all support centers. For example, figure 2 (middle) shows
a Hawaiian earring structure in grey, such that the common
point is the center of the seed of life structure, and the angle
isKπ/2. This structure is fundamental building block of the
seed of life and the nested shape descriptor.

Definition 2.4. A seed of life Kn is a set of Hawaiian ear-
rings such that Kn = {Ki(θi) | θi = 2πi

n , ∀i ≤ n}.

This defines the seed of life. This geometric structure is
a set of Hawaiian earrings such that each is equally spaced
in n polar orientations. Figure 2 (left) shows the seed of life
K6 for six quantized orientations. The seed of life defines
the pooling structure used in the nested shape descriptor and
is the primary construction of this section. Figure 4 shows
an example of increasing lobes from K1 −K10.

2.3. Proofs

In this section, we provide formal proofs for the lemmas
referenced in the main body.

Lemma 2.5. If the nesting distance is defined as
d(p, q,Λ, k) = (p− q)T (I −S(k+1,n))ΛS(1,k)(p− q), then
it is equal to an unnormalized negative log likelihood of a
conditional multivariate Gaussian distribution.

Proof. The proof follows by derivation of the nesting dis-
tance to the form of an unnormalized conditional Gaussian
distribution.



First, preliminary definitions. A joint Gaussian distribu-
tion parameterized in canonical form is given by

p(x) = N−1(h,Λ) (1)

f(x) =
1

2
xTΛx− hTx (2)

for information vector h and precision matrix Λ. The canon-
ical form N−1(h,Λ) is equivalent to the moment form
N (µ,Σ) using the identities h = Σ−1µ and Λ = Σ−1. The
quadratic form (2) follows from the negative log likelihood
of the joint density (1), and dropping the constant term.

Let variables x be partitioned into x = [x1 x2] such that
the Gaussian parameters can be partitioned

h = [h1 h2], Λ =

(
Λ11 Λ12

Λ21 Λ22

)
(3)

The conditional distribution p(x1|x2) can be derived from
the joint distribution p(x1, x2) using well known identities.

h̃ = h1 − Λ12x2 (4)
Λ̃ = Λ11 (5)

where p(x1|x2) = N−1(h̃, Λ̃) is the conditional likelihood
of remaining variables x1 given the observation x2 [3].

Next, we derive a quadratic function g as the conditional
likelihood of remaining variables given an observation. To
simplify notation, define a selection matrix S that is a bi-
nary diagonal matrix that encodes the partition of variables,
where z1 = S1x, z2 = S2x. With this notation, observe
that x = z1 + z2, and S1 + S2 = I .

g(x) ∝ −log(p(x1|x2)) (6)
g(x) = xT1 Λ̃x1 − 2h̃Tx1 (7)

= xTS1ΛS1x− 2(S1h− S1ΛS2x)Tx (8)
= xTS1ΛS1x+ 2xTS2ΛS1x (9)

= xT (S1ΛS1 + 2S2ΛS1)x (10)
= xT ((S1 + S2)ΛS1)x+ xTS2ΛS1x (11)

= xT (I + S2)ΛS1x (12)

This function g is unnormalized negative log likelihood of
the conditional distribution, since it drops the constant nor-
malization term.

Finally, the nesting distance d is

d(p, q) = (p− q)T (I − S(k+1,n))ΛS(1,k)(p− q) (13)

Let the partition z1 = S(1,k)x be the set of inliers and
z2 = S(k+1,n)x be the set of outliers determined from order
statistics. Then,

d(p, q) = (p− q)T (I − S1)ΛS2(p− q) (14)
d(p, q) = g(p− q) (15)

d(p, q) ∝ −log(p(x1|x2)) (16)

Lemma 2.6. The nesting distance is non-metric.

Proof. We show that the nesting distance satisfies non-
negativity and symmetry, but not identity and triangle in-
equality. Non-negativity d(P,Q) ≥ 0 is satisfied since all
coordinates (Pi−Qi)2 in the sum are non-negative and real.
Symmetry d(P,Q) = d(Q,P ) is satisfied since for all co-
ordinates (Pi − Qi)2 = (Qi − Pi)2. Identity d(p, q) = 0
iff p = q is not satisfied which can be shown with a sim-
ple counterexample. Let p = [0 0 0] and q = [0 0 1], then
d(p, q,Λ = I, k = 2) = 0 but p 6= q. Finally, we show a
counterexample for the triangle inequality. Let P = [0 0 0],
Q = [0 0 1], R = [1 1 1] then d(P,R,Λ = I, k = 2) = 2,
d(P,Q,Λ = I, k = 2) = 0 and d(Q,R,Λ = I, k =
2) = 1. Therefore, d(P,R) 6≤ d(P,Q) + d(Q,R) since
2 6≤ 0 + 1.

Lemma 2.7. If P corresponds to Q, and Λ = I then
d(P,Q,Λ, k) = 0 if and only if corruption(Q) < k

n .

Proof. In this section, “corruption” can be anything that
distorts a descriptor such as occlusion, viewpoint, lighting
or scale, introducing errors in squared differences in a coor-
dinate during distance computation. Furthermore, a “corre-
spondence” is a true matching of two descriptors P and Q
for a given point in a scene.

Let c = corruption(Q) be a nonzero modification of
cN coordinates of Q, where n = |Q|. The proof follows
from the definition of the nesting distance in that the sum
includes the sum of the smallest k squared differences. The
largest n − k squared differences can be arbitrarily large
without affecting the distance.

(←): If corruption(Q) < k
n , then at least k of the co-

ordinates are uncorrupted. Since P = Q, an uncorrupted
coordinate i has a squared distance d(Pi, Qi) = 0. The
bounds of the sum in the nesting distance are the smallest
k squared differences, and since at least k are uncorrupted,
and each uncorrupted coordinate has distance zero, the sum
d(p, q,Λ, k) = (p− q)TΛS(1,k)(p− q) = 0.

(→): If d(P,Q,Λ, k) = 0 then the sum of the smallest k
squared differences is zero. Since each squared difference
is non-negative, each coordinate of the smallest k squared
differences must be zero. Therefore, since corruptions are
non-zero modifications, the k coordinates are uncorrupted
and corruption(Q) < k

n .

Lemma 2.8. If P corresponds to Q and exactly one central
pixel q of Q is corrupted, then corruption(Q) = 1.0 and
d(P,Q,Λ = I, k) > 0 for all k > 0.

Proof. Let c = corruption(Q) be a nonzero modification
of cN coordinates of Q, where n = |Q|. The central pixel q
of the nested shape descriptor Q is the center of the nested
support set as defined in (2.2). By construction, the smallest
radius of the nested support set r1 = 0 since the innermost



support K1 must contain only q. This implies that there ex-
ists exactly one point q that is contained within all supports.
Therefore, if q is corrupted, then every support is corrupted.
If every support is corrupted, then corruption(Q) = 1.0,
then from lemma 2.8 d(P,Q) 6= 0, and from the non-
negativity property of lemma 2.6 d(P,Q) > 0.

3. Experimental Results
3.1. Experimental System

In this section, we describe the experimental system used
to construct seed-of-life descriptors. The subbands B for
a nested shape descriptor are scaled and oriented gradients
derived from a complex steerable pyramid [6]. The complex
steerable pyramid includes steerable filters in a quadrature
pair whose magnitude and phase response are useful for rep-
resenting signed orientations for ”black to white” vs. ”white
to black” transitions. A Matlab toolbox for building and de-
composing separable complex steerable pyramids is avail-
able at https://github.com/jebyrne/sepspyr.

Max-pooling is performed by max-filtering and sam-
pling and steerable pyramid. First, all bands and scales of
the steerable pyramid are 7×7 max-filtered. Then, for each
interest point p, we construct lobes by uniform polar sam-
pling of each band at n-orientations at a radius of 3 from
p. This sampling proceeds cumulatively over scales, and
if a lobe is outside the image, then the cumulative pooling
simply uses the nearest valid response. Observe that a 7× 7
max-filter at scale i is equivalent to a max-pooled support of
size 7 ∗ 2i which allows supports to grow exponentially in
size without an exponentially increasing number of pixels
in each lobe. Sum-pooling is performed by 7×7 max filter-
ing, followed by summing over spatial support to construct
a histogram rather than sampling.

A nested shape descriptor can be similarity normalized
using a similarity invariant local feature detector. Given a
dominant orientation r∗ from a feature detector, a normaliz-
ing similarity transform is applied to the seed-of-life pool-
ing structure K for each interest point. Then, orientation
bands are circularly shifted and linearly interpolated such
that D(i′, j, k) = D̂(i, j, k) and i′ = (i − r∗) mod (|R|).
An analogous approach is used for scale normalization.

A Matlab toolbox for constructing seed-of-life nested
shape descriptors is available at https://github.
com/jebyrne/sepspyr.

3.2. VGG-Affine

Figure 6 shows example feature matching from the
VGG-affine dataset. These examples show matched fea-
tures using NSD and nesting distance for image 2 and image
4 in a subset of distortion classes.

Figure 5 shows the matching score for the “bark” exam-
ple. This example is commonly left out of evaluations of the

Figure 5. Matching score for “bark” in the VGG-Affine dataset

VGG-Affine dataset as discussed in the main results, since
as you can see competing descriptors often perform poorly
on this example. However, the results show that the seed-
of-life descriptor is competitive with SIFT.

3.3. Automated Helicopter Landing

The zip file contains two videos showing the output of
the nested shape descriptors to the problem of pose esti-
mation. These videos show the feature reprojection from
linear homography estimation of landing zone markings in
a high resolution EO (color) video. The colors encode
the matching of interest points defined by edge based de-
tector response from the current image to the first image
in the sequence. perch 29SEP12.mp4 shows the detection
(green box) and linear homography reprojection of mark-
ings from a point 150 feet aft of the landing zone. high-
over 29SEP12.mp4 shows the detection (green box) and
linear homography reprojection from a point 50 feet above
the landing zone. These results show that the NSD can ro-
bustly detect markings with few corners and scale invariant
interest points.
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