
Appendix: Proof of Theorems 1 and 2

In the following development, we let

fy,λ,p(x) =
1

2
(x− y)2 + λ|x|p.

(In the maintext we simplify this denotation as f(x) for the convenience of expression).

Lemma 1 For any y ∈ (τGSTp (λ),+∞), fy,λ,p(x) has one unique local minimum
SGSTp (yi;λ) in the range of x ∈ (0,+∞), which can be obtained by solving the fol-
lowing equation:

x− y + λp|x|p−1 = 0.

Proof: We prove this conclusion by contradiction.
(i) Suppose that there is no intersection point between two curvesC1(x) = λp|x|p−1

and C5(x) = y − x (see Fig. 1 for illustration), which naturally leads to

λp|x|p−1 > τGSTp (λ)− x

for any x > 0. This means that

dfτGSTp (λ),λ,p(x)

dx
= λp|x|p−1 − (τGSTp (λ)− x) > 0.

That is, for all x > 0, fτGSTp (λ),λ,p(x) is monotonically increasing, which implies that

fτGSTp (λ),λ,p(x
∗
p) > fτGSTp (λ),λ,p(0),

where x∗p is defined in Eq. (24) in the maintext. This contradicts Eq. (21) in that

fτGSTp (λ),λ,p(x
∗
p) = fτGSTp (λ),λ,p(0).

Suppose that there is one intersection point betweenC1(x) = λ|x|p−1 andC4(x) =
y − x. It is very easy to show that

λp|x|p−1 > τGSTp (λ)− x

for any x > 0, and the equality only holds in one tangent point between two curves.
This also implies that fτGSTp (λ),λ,p(x) is monotonically increasing in x > 0, and

fτGSTp (λ),λ,p(x
∗
p) > fτGSTp (λ),λ,p(0),
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Figure 1: Illustrations for the proof of Lemma 1. C1(x) − C5(x) denote five curves:
C1(x) = λp|x|p−1, Ci(x) = yi−x for i = 2, 3, 4, 5,where y3 = τGSTp (λ), y2 > y3 >
y4 > y5. C4(x) is tangent with C1(x). The circles denote points (0, yi), i = 2, 3, 4, 5.
The squares denote the intersection points SGSTp (yi;λ), i = 2, 3 between Ci(x) and
C1(x). The square points also correspond to the minima of fyi,λ,p(x) for i = 2, 3.

which also leads to contradiction with Eq. (21).
(ii) For any y ∈ (τGSTp (λ),+∞), there are two intersection points between curves

C1(x) = λp|x|p−1 and C2(x) = y − x (See Fig. 1 for illustration).
This conclusion is evident, which can be clearly understood by Fig. 1. It can also

be easily proved by contradiction. Suppose that there is one or no intersection point
between two curves, and then it follows that

λ|x|p−1 > y − x > τGSTp (λ)− x.

And then we have
fτGSTp (λ),λ,p(x

∗
p) > fτGSTp (λ),λ,p(0).

This leads to contradiction.
(iii) For any y ∈ (τGSTp (λ),+∞), fy,λ,p(x) has one unique local minimum SGSTp (yi;λ)

in the range of x ∈ (0,+∞), corresponding to the larger intersection point between
C1(x) = λp|x|p−1 and C3(x) = y − x (See Fig. 1 for illustration)..

For any y ∈ (τGSTp (λ),+∞), denote the smaller and larger intersection points
between C1(x) and C3(x) as x = p1 and x = p2, respectively. Based on (ii), we have
that

(1) For x ∈ (0, p1),
dfy,λ,p(x)

dx = λp|x|p−1−(τGSTp (λ)−x) > 0, and thus fy,λ,p(x)
is monotonically increasing.

(2) For x ∈ (p1, p2),
dfy,λ,p(x)

dx < 0, and thus fy,λ,p(x) is monotonically decreasing.
(3) For x ∈ (p2,+∞), dfy,λ,p(x)dx > 0, and thus fy,λ,p(x) is monotonically increas-

ing.
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This shows that the larger intersection point p2 (SGSTp (yi;λ)) is the unique local
minimum of fy,λ,p(x) in x ∈ (0,+∞), which satisfies

SGSTp (yi;λ)− y + λp|SGSTp (yi;λ)|p−1 = 0.

The proof is completed. �

Theorem 1 For any y ∈ (τGSTp (λ),+∞), fy,λ,p(x) has one unique minimum SGSTp (yi;λ)
in the range of x ∈ (x∗p,+∞), which can be obtained by solving the following equa-
tion:

SGSTp (yi;λ)− y + λp|SGSTp (yi;λ)|p−1 = 0.

Proof: First, we prove that x∗p ∈ (p1,+∞), where p1 is defined in (iii) in the proof of
Lemma 1.

Suppose that x∗p ∈ (0, p1), since fy,λ,p(x) is monotonically increasing in (0, p1), it
holds that fτGSTp (λ),λ,p(x

∗
p) > fτGSTp (λ),λ,p(0), which leads to contradiction.

Thus x∗p ∈ (p1,+∞). Since for x ∈ (p1, p2), fy,λ,p(x) is monotonically decreasing
and for x ∈ (p2,+∞), fy,λ,p(x) is monotonically increasing, p2 = SGSTp (yi;λ) is the
unique global minimum of fy,λ,p(x) in x ∈ (p1,+∞), and thus also in x ∈ (x∗p,+∞).

The proof is completed. �

Theorem 2 For any y ∈ (τGSTp (λ),+∞), let SGSTp (yi;λ) be the unique minimum of
fy,λ,p(x) in the range of (x∗p,+∞). We have the following inequality

fy,λ,p(0) > fy,λ,p(S
GST
p (yi;λ)).

Proof: We first prove that for any y ∈ (τGSTp (λ),+∞),

fy,λ,p(0) > fy,λ,p(x
∗
p).

Since y > τGSTp (λ), we reformulate y as τGSTp (λ)+ε, where ε = y−τGSTp (λ) >
0. Based on Eq. (21), we know that

1

2
(x∗p − τGSTp (λ))2 + λ|x∗p|p =

1

2
(τGSTp (λ))2.

We then have

fy,λ,p(x
∗
p)− fy,λ,p(0)

=
1

2
(x∗p − y)2 + λ|x∗p|p −

1

2
y2

=
1

2
(x∗p − (τGSTp (λ) + ε))2 + λ|x∗p|p −

1

2
(τGSTp (λ) + ε)2

= ε(τGSTp (λ)− x∗p)− ετGSTp (λ) = −εx∗p < 0.

This means that
fy,λ,p(0) > fy,λ,p(x

∗
p).
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We then prove that fy,λ,p(0) > fy,λ,p(S
GST
p (yi;λ)).

Based on the proof of Theorem 1, we know that x∗p ∈ (p1,+∞), where p1 is
defined in (iii) in the proof of Lemma 1. Since for x ∈ (p1, p2), fy,λ,p(x) is mono-
tonically decreasing and for x ∈ (p2,+∞), fy,λ,p(x) is monotonically increasing,
p2 = SGSTp (yi;λ) is the unique global minimum of fy,λ,p(x) in x ∈ (p1,+∞), and
thus we have

fy,λ,p(S
GST
p (yi;λ)) 6 fy,λ,p(x

∗
p).

Then it naturally follows that

fy,λ,p(0) > fy,λ,p(S
GST
p (yi;λ)).

The proof is completed. �
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