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A. Convex Relaxation for the Laplace Prior.

In Section 2.2.2 of the paper, the Laplace distribution
proportion prior energy
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is introduced and the following is stated:

Proposition 1. The convex relaxation of (??) on the domain
ai,an > 0and a; + a, < 1is given by

Ei(a;,ay,) = g’ai—ﬁ(l—an)‘. 2)

Here we give a proof of this proposition:

Proof. W.l.o.g. let Uﬁ = 1. First, F; is a convex lower
bound on E, since it is convex with By = E,, - (1 — ap,) <
L. For any other such bound E1, by Ey < E,, it follows

E1(0,a,) < 7, 3)
By (7i(1 — ap),a,) <0. @)

From this, El(O, 0) < 7; and El(O, 1) <0, and therefore

For a; < 7;(1 — a,,) we can define o := Floan € [0,1].
By convexity of El, and from (??) and (??) we get

~

El(ai7a,L) = El((l - Ot) 0+ - 'Fi(l - an)a an)
< (1—a)Ei(0,a,) + a By (7(1 — ay), an)
(1—04) fi(l—an)+a'0
f

(1 - an) —a; = El(ai7 an)-

Similarly, one can show El < Ejalso fora; > 7;(1 — ay).
Thus, E is the greatest convex lower bound on £, O
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B. Implementation Details

In Section 2.2.2 of the paper we give the following dual
formulation for the convex upper bound of the Laplace dis-
tribution prior Es:

Ey —supz (al a; — 7 l—an)) —ﬁi(l—an))
) (6)
e(n—1)
1—a,

The duals «, 3 are constrained to be in the convex set

A= {(a,ﬁ) €

> a2 Vi<i<nl.

(7N
Section 3 of the paper contains implementation details for
the employed primal-dual algorithm.

B.1. Proximal Operator for a,,

For the primal-dual algorithm, in each iteration one must
compute the proximal operator

_ 49)2 _
argmin{(a" @) + ln 1)}7 ®)

o 2T 1—a,

where a? € R and 7 > 0 are constants. Setting the deriva-
tive W.r.t. an to zero, one has to solve a cubic equation.
We use the method of [?] for this. Define ¢ := 7e(n — 1),

1— a
f—|-w.

7, W :=ov3and D :=

V=

The case D > 0. In this case the solution is given by

2

an=1—v—2— = ©)
z

v/ § +w++VeD > 0.

with z 1=
The case D < 0. Otherwise, the solution is

an =1—v42vcos (% arccos (1 — %)) (10)



B.2. Proximal Operator for «, 5

The proximal operator is here
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for some af, 8? € R and 7 > 0 with the set 4 in (2?).
Define @; := af + 77; and 3; := 3Y + 7. Then the solution
is given by the projection onto a parabola, separately for
each i:

(cvi, Bi) = Projg,>z,a2 (@i, i) (12)
2
with & := £%. Considering the optimality conditions for

this projection leads to a cubic equation, which we again
solve by the method of [?]:

If already j3; > £,a2, the solution is (o, 8;) = (i, BZ)
Otherwise, with a := 25;|d@,[, b := 2(1 — 2&;3;) and d :
a® + b3 set

c—% with ¢ = vVa + Vd ifd > 0,

vi= : Ly (13)
2v/—b cos (g arccos \/33) ifd < 0.
If ¢ = 0 in the first case, set v := 0. The solution is then
given by
v G if R £ 0
a; = { % lail & 7 . Bi=&as (14)
0 else
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