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A. Convex Relaxation for the Laplace Prior.

In Section 2.2.2 of the paper, the Laplace distribution
proportion prior energy

Ep(ri) =
µ

σi
|ri − r̄i| =

µ

σi

∣∣∣ ai
1− an

− r̄i
∣∣∣ (1)

is introduced and the following is stated:

Proposition 1. The convex relaxation of (??) on the domain
ai, an ≥ 0 and ai + an ≤ 1 is given by

E1(ai, an) :=
µ

σi

∣∣ai − r̄i(1− an)
∣∣. (2)

Here we give a proof of this proposition:

Proof. W.l.o.g. let µ
σi

= 1. First, E1 is a convex lower
bound on Ep since it is convex with E1 = Ep · (1− an) ≤
Ep. For any other such bound Ê1, by Ê1 ≤ Ep it follows

Ê1(0, an) ≤ r̄i, (3)

Ê1

(
r̄i(1− an), an

)
≤ 0. (4)

From this, Ê1(0, 0) ≤ r̄i and Ê1(0, 1) ≤ 0, and therefore

Ê1(0, an) ≤ anÊ1(0, 1) + (1− an)Ê1(0, 0)

≤ r̄i(1− an).
(5)

For ai ≤ r̄i(1 − an) we can define α := ai
r̄i(1−an) ∈ [0, 1].

By convexity of Ê1, and from (??) and (??) we get

Ê1(ai, an) = Ê1((1− α) · 0 + α · r̄i(1− an), an)

≤ (1− α) Ê1(0, an) + α Ê1

(
r̄i(1− an), an

)
≤ (1− α) · r̄i(1− an) + α · 0
= r̄i(1− an)− ai = E1(ai, an).

Similarly, one can show Ê1 ≤ E1 also for ai ≥ r̄i(1− an).
Thus, E1 is the greatest convex lower bound on Ep.

B. Implementation Details
In Section 2.2.2 of the paper we give the following dual

formulation for the convex upper bound of the Laplace dis-
tribution prior E2:

E2 = sup
α,β

n−1∑
i=1

(
αi
(
ai − r̄i(1− an)

)
− βi(1− an)

)
+
ε(n− 1)

1− an
.

(6)

The duals α, β are constrained to be in the convex set

A :=
{

(α, β) ∈ R2(n−1)
∣∣ βi ≥ εσ2

i

µ2 α
2
i ∀1 ≤ i < n

}
.

(7)
Section 3 of the paper contains implementation details for
the employed primal-dual algorithm.

B.1. Proximal Operator for an
For the primal-dual algorithm, in each iteration one must

compute the proximal operator

arg min
an

{
(an − a0

n)2

2τ
+
ε(n− 1)

1− an

}
, (8)

where a0
n ∈ R and τ > 0 are constants. Setting the deriva-

tive w.r.t. an to zero, one has to solve a cubic equation.
We use the method of [?] for this. Define c := τε(n − 1),
v :=

1−a0n
3 , w := v3 and D := c

4 + w.

The case D ≥ 0. In this case the solution is given by

an = 1− v − z − v2

z
(9)

with z := 3

√
c
2 + w +

√
cD > 0.

The case D < 0. Otherwise, the solution is

an = 1− v + 2v cos
(

1
3 arccos

(
1− 2D

w

))
. (10)

1



B.2. Proximal Operator for α, β

The proximal operator is here

arg min
(α,β)∈A

n−1∑
i=1

(α− α0
i )

2

2τ
+

n−1∑
i=1

(β − β0
i )2

2τ

+

n−1∑
i=1

(
− αir̄i − βi

)
.

(11)

for some α0
i , β

0
i ∈ R and τ > 0 with the set A in (??).

Define α̂i := α0
i + τ r̄i and β̂i := β0

i + τ . Then the solution
is given by the projection onto a parabola, separately for
each i:

(αi, βi) = projβi≥ε̂iα2
i

(
α̂i, β̂i

)
(12)

with ε̂i :=
εσ2

i

µ2 . Considering the optimality conditions for
this projection leads to a cubic equation, which we again
solve by the method of [?]:

If already β̂i ≥ ε̂iα̂2
i , the solution is (αi, βi) =

(
α̂i, β̂i

)
.

Otherwise, with a := 2ε̂i|α̂i|, b := 2
3 (1 − 2ε̂iβ̂i) and d :=

a2 + b3 set

v :=

 c− b
c with c =

3
√
a+
√
d if d ≥ 0,

2
√
−b cos

(
1
3 arccos a√

−b 3

)
if d < 0.

(13)

If c = 0 in the first case, set v := 0. The solution is then
given by

αi =

{
v

2ε̂i
α̂i

|α̂i| if α̂i 6= 0

0 else

}
, βi = ε̂iα

2
i . (14)
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