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List of Symbols

We first introduce symbols that are used frequently in this supplementary document.

1. s(t) : illumination waveform function

2. rij(t) : returning waveform function at pixel (i, j)

3. ∆ : sampling time of single photon detector

4. Tr : pulse repetition interval

5. Tp : root mean square (RMS) pulse duration

6. Zmax : maximum scene depth

7. Zij : depth value at pixel (i, j)

8. αij : reflectance value at pixel (i, j)

9. η : detector quantum efficiency

10. bλ : background light flux at operating optical wavelength λ

11. d : detector dark count rate

12. c : speed of light

13. S : total photon count contained in incident signal, S =
∫ Tr

0
ηs(t) dt.

14. B : total photon count contained in incident background, B =
∫ Tr

0
ηbλ + d.
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Proofs for the theory and algorithms presented in main paper

Derivation of signal photon time-of-arrival likelihood, ftij |signal(τ): As discussed in the pa-
per, λij(t) = η αijs(t−2Zij/c)+(ηbλ+d) is the rate function of time-inhomogeneous Poisson
process observed by the single photon avalanche diode (SPAD) at pixel (i, j). This Poisson
processes observed at the detector is a merged stochastic process, containing signal and back-
ground components. Therefore, to derive the arrival time statistics of only signal photons, we
set the background and detector dark count noise components to zero, i.e., bλ = d = 0.

The time-correlated single-photon counting detection is capable of precisely timing the sin-
gle photon arrivals within an accuracy interval of, ∆ seconds, starting at time instant, τ , where,
τ ∈ [0, Tr]. Typically, ∆ measures a few picoseconds and is much smaller than pulse dura-
tion, Tp, and pulse repetition interval, Tr. Using time-inhomogenous Poisson photon counting
statistics, we obtain the following statistics for first signal photon detection’s arrival time,

Pr[detecting first signal photon during t ∈ (τ, τ + ∆)] = Pr[no signal photon detection in t ∈ (0, τ)]

× Pr[one or more signal detections in t ∈ (τ, τ + ∆)]

= exp

−αij τ∫
0

s(t− 2Zij/c) dt

− exp

−αij τ+∆∫
0

s(t− 2Zij/c) dt


Because ∆ is relatively very small, it is a good approximation of an infinitesimal time-interval.
Using this fact, we effectively treat the photon arrival time at pixel (i, j) as a continuous random
variable with probability density function (pdf), ftij |signal(τ). To derive this pdf we note that

ftij |signal(τ) = lim
∆→0

Pr[detecting first signal photon during t ∈ (τ, τ + ∆)]

∆
,

and arrive at the expression for pdf expression

ftij |signal(τ) ∝ s(t− 2Zij/c) e
−αij

τ∫
0

s(t−2Zij/c) dt
≈ s(t− 2Zij/c) (1)

Effect of Low rate approximation: The latter approximation in Equation 2 is only valid at
low-light levels, when the optical flux is low, i.e., (S +B � 1).
After normalization, we obtain the final expression,

ftij |signal(τ) = s(t− 2Zij/c) η/S
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Derivation of background noise photon time-of-arrival likelihood, ftij |background(τ): As be-
fore, to derive the arrival time statistics of only background photons, we set the signal compo-
nents to zero, i.e., αij = 0. Then the incident flux at the detector is only due to background
noise and detector dark counts, i.e., λij(t) = ηbλ + d. This rate function is time-homogeneous
as opposed to the Poisson process generated by signal photons. Using time-homogenous Pois-
son photon counting statistics, we obtain the following statistics for first background photon
detection’s arrival time,

Pr[detecting first background photon during t ∈ (τ, τ + ∆)] =

Pr[no signal photon detection in t ∈ (0, τ)]

× Pr[one or more signal detections in t ∈ (τ, τ + ∆)]

= exp [−(ηbλ + d) τ ]− exp [−(ηbλ + d) (τ + ∆)]

Again, because ∆ is relatively very small, we effectively treat the photon arrival time at pixel
(i, j) as a continuous random variable with probability density function (pdf), ftij |background(τ).
To derive this pdf we note that

ftij |background(τ) = lim
∆→0

Pr[detecting first background photon during t ∈ (τ, τ + ∆)]

∆
,

and arrive at the final expression for pdf expression

ftij |signal(τ) ∝ (ηbλ + d) e
−
τ∫
0

(ηbλ+d) dt
≈ (ηbλ + d) (2)

Effect of Low rate approximation: The latter approximation in Equation 2 is only valid at
low-light levels, when the optical flux is low, i.e., (S +B � 1).
After normalization, we obtain the final expression,

ftij |background(τ) =
1

Tr

Derivation of probability P0(i, j): The total mean photon count at the detector is equal to
(αij S + B). The observation time associated with a single pulsed illumination is equal to
the pulse repetition periond, Tr. Denote with N the total number of photons measured by
the detector in the time-interval, [0, Tr]. Then using Poisson photon counting statistics the
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distribution of N is given as

Pr[N = k] =
e−(αij S+B)(αij S +B)k

k!

The probability, P0(i, j) of not detecting a photon in response to a single pulsed illumination is
obtained as follows

P0(i, j) = Pr[N = 0] = e−(αij S+B)
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Novel Image Formation: Formulations and Algorithms

Step 1: Reflectivity estimation: Let {nij} be the dataset for the number of elapsed pulses
until first photon detection obtained by raster scanning through all the pixels. Then, we can
write the negative log-likelihood of observing the number of pulses until one detection as

Lα(αij;nij) = − log
((
e−(αijS+B)

)nij−1 (
1− e−(αijS+B)

))
≡ (nij − 1)Sαij − log

(
1− e−(αijS+B)

)
,

where ≡ denotes equality up to a constant. We note that the strict concavity of e−αijS over αij
implies the strict concavity of 1−e−(αijS+B), and the strict convexity of− log

(
1− e−(αijS+B)

)
.

Thus, Lα(αij;nij) is a strictly convex function of αij , since it is a sum of a convex and strictly
convex function. Figure 1 shows how the negative log-likelihood function changes when the
background illumination power B is varied.
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Figure 1: Lα(αij;nij) vs. αij when nij = 10 and S = 1 for several values of B. B ranges
from 0.01 (blue) to 0.05 (red). Note the global minimum of negative log-likelihood shifts as B
changes.

Incorporating the prior knowledge that the reflectivity image of a natural scene is smooth, our
regularized maximum likelihood estimate of scene reflectance is

arg min
A={aij}:
aij≥0

∑
i

∑
j

(nij − 1)Sαij − log
(
1− e−(αijS+B)

)
+ β‖ΦαA‖1,

where Φα is a sparsifying transform (e.g. discrete wavelet transform), ‖ · ‖1 is the l1-norm, and
β is the variational parameter controls the degree of regularization.
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Step 2: Background noise rejection: At pixel (i, j), the observed inhomogeneous Poisson
process has rate λij(t) = ηαijs(t − 2Zij/c) + (ηbλ + d). Let “signal” and “background”
be the events that the first detected photon is coming from pulse waveform (the first term in
λij(t)) and noise (the second term in λij(t)), respectively. Because the photon detection can
only come from either the pulse or background, we see that Pr[signal] = αijS/(αijS + B),
Pr[background] = B/(αijS + B). so that Pr[signal] + Pr[background] = 1. The likelihood
function can thus be written as

ptij |signal(τ) = (Pr[signal]× ptij |signal(τ)) + (Pr[background]× ptij |background(τ))

=

(
αijS

αijS +B

)
s(τ − 2Zij/c)∫ Tr

0
s(t− 2Zij/c) dt

+

(
B

αijS +B

)
1[0,Tr](τ)

B
,

where 1A(x) is the indicator function of element x in set A. Thus, the time-of-arrival of the
first detected photon has a probability density function that is a mixture of the pulse distribution
and a high-variance uniform distribution modeling background light. Such signal noise model
is known as the impulse noise model 1.

As shown Garnett et al., the rank-ordered absolute difference (ROAD) statistics can accu-
rately determine which samples came from the high-variance uniform distribution when sam-
ples are drawn from a mixture distribution described above. Let Aij be the set of the absolute
differences between the time-of-arrival value tij and the time-of-arrival values at its eight neigh-
boring pixels. Then, the ROAD statistic for the (i, j)th pixel of the depth map is given as

ROAD(i, j) = min
x1,x2,x3,x4∈Ai,j

(x1 + x2 + x3 + x4) .

Computing this ROAD statistic simplifies to sorting the absolute arrival time differences in
ascending order, and computing the sum of the first four values. Finally, as discussed in the
paper, we obtain the set of corrupted (censored) image pixels using a binary hypothesis test
which uses the reflectivity estimates computed in Step 1, and the ROAD statistic.

1Garnett, Roman, Timothy Huegerich, Charles Chui, and Wenjie He. A universal noise removal algorithm with
an impulse detector. Image Processing, IEEE Transactions on 14, no. 11 (2005): 1747-1754.
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Step 3: Depth estimation: The negative log-likelihood of signal photon arrival times is

Lz(Zij; tij) ≡ − log s(tij − 2Zij/c).

So, if the illuminated waveform s(t) is log-concave. then the regularized maximum likeli-
hood estimation of depth is computed by solving a convex optimization problem. For example,
choosing the pulse to be in the family of generalized Gaussians such that s(t) ∝ e−(|t|/a)p , where
p > 1 and a > 0, leads to a convex optimization problem for regularized maximum likelihood
estimation. Figure 2 shows the negative log-likelihood functions of generalized Gaussian distri-
butions, which are log-concave, and the resulting negative log-likelihood functions are convex.
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Figure 2: Left: Plot of generalized Gaussian functions with p = 2 (red), 3 (green), 4 (black),
5 (blue) with fixed a = 1 and amplitude 1. The generalized Gaussian function includes the
Gaussian function (p = 2) and the square function (p large). Right: plot of negative log
generalized Gaussian functions for the same p, a values.

Based on the prior that depth maps are smooth, the regularized MLE can be written as

arg min
D={dij}

0≤dij≤Zmax

∑
uncensored (i,j)

− log s(tij − 2dij/c) + β||ΦZD||1.

We note that even though we do not use the arrival times at the censored pixels, our regularized
ML estimate the depth at the censored pixels by enforcing global sparsity.
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Derivation of ML depth estimation error: At pixel (i, j), the pointwise maximum likeli-
hood depth estimate based on the first photon arrival time is, Ẑij = c (tij − Tm)/2, where
Tm = arg maxt s(t). In our experiments, we set the pulse to be mode-centered, hence Tm = 0.
The root mean square error of the ML estimate as

RMSE(Zij, Ẑij) =

√
E
[
(Zij − Ẑij)2

]
.

We earlier derived the statistics of tij in the cases when the detected photon originated due to
background. Using these probability density functions, and the Pr[detected photon is back-
ground noise], we derive

RMSE(Zij, Ẑij) =

√√√√( αijS

αijS +B

)
c2

4
T 2
p +

(
B

αijS +B

)
c2

4

((
2Zij
c
− Tr

)2

+
T 2
r

12

)
.

As was in our experiments, the signal flux and the background noise flux were approximately
equal, i.e., S ≈ B we assume that the probabilities of detecting a photon from either signal or
background are equal. Therefore,

RMSE(Zij, Z̃ij) ≥
c

2

√
1

2

(
T 2
p +

T 2
r

12

)
.

Typically in range imaging applications, Tr � Tp. Hence, the root mean square error between
true depth and the ML estimate based on the first photon observation is at least c Tr/4

√
6.

Thus, even ML estimation requires a large number of detected photons at each pixel location to
achieve sub-pulse width depth resolution under non-zero background illumination conditions,
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Experimental Calibration

Measurement of pulse shape, s(t): For depth estimation, our computational imager requires
knowledge of the pulse shape, s(t). This was obtained by directly illuminating the detector
with highly attenuated laser pulses, and binning the photon arrival times to generate a photon
counting histogram. Then, we obtain s(t) by least square fitting the histogram with a Gaussian
mixture function of order 3.
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Figure 3: Histogram of photon arrival times (blue) and its Gaussian mixture function fit (red).

Radiometric calibration: The detection efficiency is the product of the interference filter’s
transmission and the detector’s quantum efficiency, γ = 0.49 × 0.35 = 0.17. A reference
calibration for S, the average photon number in the backreflected signal received from a single
laser pulse, was obtained as follows. All sources of background light were turned off, and the
laser was used to illuminated a highly-reflective Lambertian surface at a distance of 2 m. The
average number of transmitted pulses before a photon detection was found to be 〈ncalibration〉 =

65. Using Equation 1 from the paper, with αcalibration = 1 and B = 0, we find

〈ncalibration〉 =
1

1− P0(calibration)
=

1

1− exp(−S)
,

from which 〈ncalibration〉 = 65 and η = 0.17 give S = 0.09.
For adjusting background illumination power, the laser was first turned off and all objects

were removed from the scene. Then the incandescent lamp’s optical power was adjusted such
that the average number of background photons reaching the detector in a pulse repetition period
was B = 0.1.
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Additional figures detailing experimental setup and compari-
son with denoising methods

Ground truth datasets were computed by reducing background noise to a negligible level and
using pointwise ML estimation with a large number of photons (M ≈ 1000 photons-per-pixel).

For all processing methods used, the parameters were choses to minimize RMSE for depth
maps and PSNR for reflectivity reconstruction.

Schematic of experimental setup

Figure 4: Schematic of the experimental setup showing the optical paths and pulse shape mea-
sured
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Scene photograph of layered scene dataset

Figure 5: Photograph for layered scene dataset
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Reflectivity images for layered scene dataset

(a) Ground truth. Pointwise ML estimate.

(c) Our processing: first-photon imaging. (d) BM3D with Anscombe transformation.
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Depth maps for layered scene dataset

(a) Ground truth. Pointwise ML estimate.

(c) Our processing. (d) Median filtering.
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Scene photograph of sunflower dataset
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Reflectivity images for sunflower dataset

(a) Ground truth. Pointwise ML estimate.

(c) Our processing. (d) BM3D.

Figure 6: Sunflower reflectivity image. Our method rejects background and increases image
contrast while retaining fine spatial features like flower petals. In comparison, BM3D reduces
errors at the expense of oversmoothing and losing spatial features.
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Depth maps for sunflower dataset

(a) Ground truth. Pointwise ML estimate.

(c) Our processing. (d) Median filtering.

Figure 7: Sunflower depth map. Our method rejects background and denoises while retaining
fine spatial features like flower petals.
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Scene Photograph of Mannequin Dataset
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Reflectivity images for mannequin dataset

(a) Ground truth. Pointwise ML estimate.

(c) Our processing. (d) BM3D with Anscombe transformation.

Figure 8: Note the recovery of heavily obscured text using our method.
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Depth maps for mannequin dataset

(a) Ground truth. Pointwise ML estimate.

(c) Our processing. (d) Median filtering.
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Additional figures and plots for error analysis
Reflectivity estimation error images for sunflower dataset

| Ground truth - pointwise ML | | Ground truth - our method |

| Ground truth - regularized ML assuming AWGN | colorbar for (a)-(c)

Figure 9: Absolute difference images between reflectivity images. The high background error
is masked out so avoid obscuring the details.
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Depth estimation error images for sunflower dataset

| Ground truth - pointwise ML | | Ground truth - our method |

| Ground truth - regularized ML assuming AWGN | colorbar for (a)-(c)

Figure 10: Absolute difference between depth maps. G denotes ground truth.
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Noise rejection performance for sunflower dataset

Ground truth for noisy pixels Our method based on ROADS

False positives and false negatives

Figure 11: (a) Noise photon labels obtained by thresholding high depth errors between ground truth and one
photon per pixel data. (b) Noise photon labels identified by our framework (c) Pixelwise XOR of (b) and (c)
indicating both false positives and false negatives. Note that our algorithm based on ROADS is highly successful
at identifying noisy pixels.
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Quantitative error analysis

For all processing methods used, the parameters were choses to minimize RMSE for depth maps
and PSNR for reflectivity reconstruction.

pointwise (or
pixelwise) ML

estimate

our method
(first-photon

imaging)

other denoising
methods

sunflower depth RMSE = 13.5cm RMSE = 5.3mm
RMSE = 10.6cm
(median filtering)
21.3cm (BM3D)

sunflower
reflectivity

PSNR = 10.1dB PSNR = 34.2dB
PSNR = 15.3dB

(median filtering)
20.4dB (BM3D)

layered scene
depth

RMSE = 15.7cm RMSE = 6.8mm
RMSE = 11.8cm
(median filtering)
19.4cm (BM3D)

layered scene
reflectivity

PSNR = 7.6 dB PSNR = 27.5dB
PSNR = 16.7dB

(median filtering)
19.8dB (BM3D)

mannequin depth RMSE = 21.2cm RMSE = 2.4cm
RMSE = 14.7cm
(median filtering)
27.3cm (BM3D)

mannequin
reflectivity

PSNR = 11dB PSNR = 35.9dB
PSNR = 11.5dB

(median filtering)
18.3dB (BM3D)
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Error distribution plots

Using the absolute error images for each dataset, the cumulative error distribution is computed.
As shown in all the plots, our method dominates the curves for the other reconstruction methods.

Figure 12: Mannequin dataset: reflectivity error cumulative distribution.

Figure 13: Mannequin dataset: depth error cumulative distribution.
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Figure 14: Layered scene dataset: reflectivity error cumulative distribution.

Figure 15: Layered scene dataset: depth error cumulative distribution.
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Figure 16: Sunflower dataset: reflectivity error cumulative distribution.

Figure 17: Sunflower dataset: depth error cumulative distribution.
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Repeatability analysis

For testing repeatability, 500 independent first-photon datasets for the layered scene and man-
nequin were collected and processed using a fixed set of numerical and optical parameters across
the datasets. The results for the layered scene dataset are discussed in the following figure (see
movie 1696-kirmani-sup-movie3.mpg for mannequin dataset repeatability test):

(a) (b)

(c)

Figure 18: Pixelwise standard deviation of the posterior distribution computed by processing 500 first-photon
data trials processed using: (a) Pointwise (or pixelwise ML) (b) Our proposed method (note the low standard
deviation ( 4 − 6mm) observed throughout the image. This indicates that our method is robust and consistently
improves estimation accuracy across independent trials. The darker pixels reduce the SNR and there estimation
quality is poorer in these regions. The error is also high at the object edges and lateral faces. (c) Median filtering
(which performed better than BM3D. Also note that the standard deviation is on the order 15 cm in most regions
indicating that in the absence of a good noise model, other denoising methods fails to correct estimation errors.
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Movie descriptions

Title for movie file named 1696-kirmani-sup-movie1.mpg

Overview of the first photon imaging technique.

Title for movie file named 1696-kirmani-sup-movie3.mpg

Video of the experimental setup and data collection.

Title for movie file named 1696-kirmani-sup-movie3.mpg

Mannequin dataset repeatability test by processing 500 first-photon datasets using the proposed
method and the pointwise ML technique.
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