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Abstract. Building upon Gilbert’s convergence proof of his algorithtm to solve
the Minimum Norm Problem, we establish a framework where a much simplified
version of his proof allows us to prove the convergence of two algorithms for
solving the Nearest Point Problem for disjoint convex hulls, namely the GSK
and the MDM algorithms, as well as the convergence of the SMO algorithm for
SVMs over linearly separable two–class samples.

1 Introduction

Given a sample S = {(Xi, yi) : i = 1, . . . , N} with yi = ±1, let I± be the set
of indices of the patterns Xi belonging to each class. Writing W =

∑
i αiyiXi =∑

i∈I+
αiXi −

∑
i∈I− αiXi = W+ − W−, we can solve the Nearest Point Problem

(NPP) of finding the two closest points in the convex hulls of each class, by:

min D (α) = min 1
2‖W+ − W−‖2 = minα

1
2

∑
i

∑
j αiαjyiyjXi · Xj

s.t.
∑

i∈I+
αi =

∑
i∈I− αi = 1, αi ≥ 0 ∀i . To do so, most of the methods proposed

in the literature are adaptations of methods for the Minimum Norm Problem (MNP) of
finding the point in a convex hull closest to the origin. Classical procedures for MNP
are the Gilbert [1] and Mitchell [2] algorithms. These two algorithms were adapted to
solve NPP as well as SVM for classification in [3] and [4] respectively. We shall call
these NPP adaptations GSK and MDM. We recall that the dual problem solved by an
SVM is

min D̃ (α) = 1
2

∑
i

∑
j αiαjyiyiXi · Xj −

∑
i αi

s.t.
∑

i αiyi = 0, αi ≥ 0 ∀i . Convergence proofs for GSK and MDM were given
in [1] and Mitchell [2] (we are not aware of such proofs for their extensions to NPP)
and a quite general convergence proof for SMO has been given in [5]; for the linearly
separable case a much simpler SMO proof was given in [6]. In this work we propose a
unified approach for GSK, MDM and SMO that results in much simpler proofs, again
for linearly separable samples. More precisely, we will use a common framework with
three basic steps, namely: 1) To bound the distance ‖W t − W ∗‖ between the iterates

� With partial support of Spain’s TIN 2007–66862 project and Cátedra UAM–IIC en Modelado
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W t and the optimal W ∗ by a quantity Δt that appears naturally in the algorithms, 2)
To show that Δtj → 0 for some subsequence tj and, therefore, that W tj → W ∗, 3) To
conclude that W t → W ∗ for the full sequence W t.

The paper is organized as follows. In section 2 we give an overview of the GSK,
MDM and SMO methods. Convergence proofs are given in section 3. Finally, section 4
offers some further discussion and pointers to future research.

2 Algorithms for Solving NPP and SVM

GSK uses at each iteration t a single updating pattern to build the new weight vector
W t+1 by updating one of the components W t

± of the current W t = W t
+ −W t

− through
an appropriate convex combination with a pattern XL± of the corresponding class. For
instance, assuming we use an XLt

+
in the positive class, we have W t+1 = (1−λt)W t

++
λtXLt

+
− W t

− = W t + λt(XLt
+
− W t

+) and it is shown in [3] that the optimal λt is

λt = min
{
1, Δt

+/‖W t
+ − XLt

+
‖2

}
, (1)

where we write Δt
+ = yLt

+
W t ·(W t

+−XLt
+
). Moreover, from the expression above for

W t+1 we have ‖W t‖2 − ‖W t+1‖2 = 2λtW t · (W t
+ − XLt

+
) − (λt)2‖W t

+ − XLt
+
‖2.

Notice that ‖W t‖2 −‖W t+1‖2 = 2(D(αt)−D(αt+1)) and if we take an unclipped λt

in (1), we have

D(αt) −D(αt+1) = (Δt
+)2/(2‖W t

+ − XLt
+
‖2) ≥ (Δt

+)2/(2D2) , (2)

where D = maxi,j ‖Xi−Xj‖. In this case, the norm decrease is approximately optimal
if Δt

+ is largest, for which we just choose Lt
+ as Lt

+ = arg mini∈I+ {yiW
t · Xi}. If,

however, clipping takes place we have Δt
+ ≥ ‖W t

+ − XLt
+
‖2, which yields

D(αt) −D(αt+1) = W t · (W t
+ − XLt

+
) − ‖W t

+ − XLt
+
‖2/2 ≥ Δt

+/2 . (3)

Similar formulae hold when we choose a XL− in the negative class and the class chosen
in GSK is the one for which Δt

+ or Δt
− is largest. Once the choice is made we just write

Δt instead of Δt±; see [3] for more details.
Turning our attention to MDM, it updates at each step one of the W t

± components
of W t using now two pattern vectors XL± and XU± . For instance, if we update W t

+

using XLt
+

and XUt
+

, we will have W t
+ = W t

+ + λt(XLt
+
− XUt

+
) and, therefore,

W t+1 = W t
+ + λt(XLt

+
− XUt

+
) − W t

− = W t + λt(XLt
+
− XUt

+
). Now the optimal

λt is chosen as [4]:

λt = min
{
αt

Ut
+
, Δ

t

+/‖XUt
+
− XLt

+
‖2

}
, (4)

where this time we write Δ
t

+ = yLt
+
W t · (XUt

+
− XLt

+
). If clipping is not needed,

taking λt = Δ
t

+/‖XUt
+
− XLt

+
‖2 in (4) and arguing as done in the GSK case, we

obtain

D(αt) −D(αt+1) = (Δ
t

+)2/(2‖XUt
+
− XLt

+
‖2) ≥ (Δ

t
)2/(2D2) , (5)
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where we used ‖XUt
+
− XLt

+
‖2 ≤ D2. The D decrease is largest when Δ

t

+ is largest,

which we achieve by choosing U t
+ = argmaxi∈I+|αt

i>0 {yiW
t · Xi} and Lt

+ as done
for GSK. We may have to clip λt at αt

Ut
+

to ensure that the new coefficient of XUt
+

does

not become negative. In this case, we obtain

D(αt) −D(αt+1) = αt
Ut

+
Δ

t

+ − (αt
Ut

+
)2‖XUt

+
− XLt

+
‖2/2 ≥ αt

Ut
+
Δ

t
/2 , (6)

since clipping occurs when Δ
t

+ ≥ αt
Ut

+
‖XUt

+
− XLt

+
‖2. Similar formulae hold when

we choose XUt
− , XLt

− in the negative class and the class finally selected is the one for

which the quantity Δ
t

± is largest [4]. Once chosen, we shall just write Δ
t
.

The SMO updates are of the form W t+1 = W t + λtyLt (XLt − XUt), or, in terms
of the α coefficients, αt+1

Lt = αt
Lt + λt, αt+1

Ut = αt
Ut − λtyUtyLt , and the other αj do

not change. An optimal λt is now chosen so that the decrease in the SVM dual function
is largest, which means [6]

λt = yLtΔ̃t/‖XUt − XLt‖2 = yLtμ , (7)

where we write now Δ̃t = W t·(XUt−XLt)−(yUt−yLt) and μ = Δ̃t/‖XUt−XLt‖2.
Here the D̃ decrease is largest when Δ̃t is largest, which can be achieved if we select
Lt = arg mini∈IL

{W t · Xi − yi} and U t = arg maxi∈IU
{W t · Xi − yi}, where

IL = {i : yi = 1 or yi = −1, αt
i > 0} and IU = {i : yi = 1, αt

i > 0 or yi = −1}.
As done before, we may have to clip μ as μt = min {μ, αt

Lt} if yLt = −1 and as
μt = min {μ, αt

Ut} if yUt = 1. If no clipping is required, making use of (7) yields

D̃(αt) − D̃(αt+1) = (Δ̃t)2/(2‖XUt − XLt‖2) ≥ (Δ̃t)2/(2D2) . (8)

If, however, μ is clipped at αt
Ut , then Δ̃t ≥ αt

Ut ‖XUt − XLt‖2 must hold, yielding

D̃(αt) − D̃(αt+1) = αt
UtΔ̃t − (αt

Ut)2‖XUt − XLt‖2/2 ≥ αt
UtΔ̃t/2 , (9)

while we similarly obtain D̃(αt) − D̃(αt+1) ≥ αt
LtΔ̃t/2, if μ is clipped at αt

Lt . We
refer to [6] for more details.

3 Convergence

If the algorithms described previously stop in a finite number t of iterations, the Δt,
Δ

t
and Δ̃t values must be zero, and the KKT conditions imply we are at an optimum.

Hence, in the sequel we will consider the case of an infinite number of iterations.

3.1 Convergence of GSK and MDM

We give a unified convergence proof for GSK and MDM. As a first step we show the
following.
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Proposition 1. If W ∗ is the closest vector between the positive and negative class hulls,
then the following hold

‖W t − W ∗‖2 ≤ 2Δt ≤ 2Δ
t

, (10)

‖W t − W ∗‖2 ≤ ‖W t‖2 − ‖W ∗‖2 = 2(D(αt) −D(α∗)) . (11)

Proof. A simple geometric reasoning in disjoint convex hulls shows that W t · W ∗ ≥
‖W ∗‖2 and, therefore,

‖W t − W ∗‖2 = ‖W t‖2 − W t · W ∗ − W t · W ∗ + ‖W ∗‖2 ≤ ‖W t‖2 − W t · W ∗

= ‖W t‖2 −
∑

i∈I+

α∗
i yiW

t · Xi −
∑

i∈I−
α∗

i yiW
t · Xi

≤ ‖W t‖2 − min
i∈I+

{
yiW

t · Xi

} − min
i∈I−

{
yiW

t · Xi

}

= W t · W t
+ − min

i∈I+

{
yiW

t · Xi

} − W t · W t
− − min

i∈I−

{
yiW

t · Xi

}

= Δt
+ + Δt

− ≤ 2Δt .

We show next that Δt
+ ≤ Δ

t

+ and that Δt
− ≤ Δ

t

−. In fact

Δt
+ = W t · W t

+ − min
i∈I+

{yiW · Xi} =
∑

i∈I+

αiyiW
t · Xi − min

i∈I+
{yiW · Xi}

≤ max
i∈I+|αt

i>0
{yiW · Xi} − min

i∈I+
{yiW · Xi} = Δ

t

+ ,

and a similar argument works for the other bound. Finally, to prove (11), reasoning as
just done at the beginning of the previous argument, we have ‖W t−W ∗‖2 ≤ ‖W t‖2−
W t · W ∗ ≤ ‖W t‖2 − ‖W ∗‖2. ��
We show next the following.

Proposition 2. For GSK we have Δt → 0 as t → ∞. Moreover, for MDM there is a
subsequence tj such that Δ

tj → 0.

Proof. For GSK (2) and (3) imply D(αt) − D(αt+1) ≥ min{(Δt)2/(2D2), Δt/2}.
Thus, since the D(αt) sequence decreases and is always positive, it must converge and,
therefore, we must have D(αt) −D(αt+1) → 0, so the whole Δt sequence goes to 0.

For MDM, (5) and (6) give D(αt) − D(αt+1) ≥ min{(Δt
)2/(2D2), αt

UtΔ
t
/2},

and arguing as before, the right hand side must tend to 0. Its first term applies when no
clipping is done but, arguing as in [6], it can be proved that clipping cannot occur indef-
initely after some t. Thus, the bound on (Δ

t
)2/(2D2) must apply to some subsequence

tj and, therefore, Δ
tj → 0. ��

Now we are ready to show the following.

Theorem 1. The W t updates of the GSK and MDM algorithms converge to W ∗ as t
goes to ∞.
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Proof. For GSK, the result is immediate by Proposition 2 and (10).
For MDM, Proposition 2 and (10) imply that W tj → W ∗. By continuity of the

dual, D(αtj ) → D(α∗). But the sequence D(αt) decreases, so we must then have
D(αt) → D(α∗). Finally, it follows by (11) that W t → W ∗.

3.2 Convergence of SMO

The convergence of SMO is also proved along similar lines.

Proposition 3. If W ∗ =
∑

α∗
i yiXi is the optimal SVM solution, we have

‖W t − W ∗‖2 ≤ (Δ̃t/2)

(
∑

i

αt
i +

∑

i

α∗
i

)

, (12)

‖W t − W ∗‖2 ≤ 2(D̃(αt) − D̃(α∗)) . (13)

Proof. First, notice that W ∗ is a primal feasible weight vector (i.e., yi(W ∗·Xi+b∗) ≥ 1
for all i), so we have W t · W ∗ =

∑
i αt

iyiW
∗ · Xi =

∑
i αt

iyi(W ∗ · Xi + b∗) ≥
∑

i αt
i . Besides, the KKT conditions imply that ‖W ∗‖2 =

∑
i α∗

i and, hence, D̃(α∗) =
‖W ∗‖2/2 − ∑

i α∗
i = −‖W ∗‖2/2. Then

‖W t − W ∗‖2 = ‖W t‖2 − 2W t · W ∗ + ‖W ∗‖2 ≤ ‖W t‖2 − 2
∑

i

αt
i + ‖W ∗‖2

= 2(D̃(αt) − D̃(α∗)) ,

so that (13) holds. Observe that, by the results above, we can also write

‖W t − W ∗‖2 ≤ ‖W t‖2 −
∑

i

αt
i − W t · W ∗ +

∑

i

α∗
i . (14)

For the first two terms, we have
∥
∥W t

∥
∥2 −

∑

i

αt
i =

∑

i

αt
iyiW · Xi −

∑

i

αt
iy

2
i =

∑

i

αt
iyi(W · Xi − yi)

=
∑

I+

αt
i(W · Xi − yi) −

∑

I−

αt
i(W · Xi − yi)

≤
(

max
IU

{
W t · Xi − yi

} − min
IL

{
W t · Xi − yi

}
) ∑

i

αt
i/2

= (Δ̃t/2)
∑

i

αt
i ,

where we use
∑

I+
αt

i =
∑

I− αt
i =

∑
αt

i/2. Analogously to what has just been done,

we get W t · W ∗ − ∑
i α∗

i ≥ (−Δ̃t/2)
∑

i α∗
i for the last two terms. Hence, putting it

all together in (14), we arrive at (12). ��
We point out that the above argument for inequality (12) can also be applied to complete
the partial proof of Lemma 1 in [6] given there.
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Proposition 4. There is a subsequence W tj that tends to W ∗ as t → ∞.

Proof. As an easy consequence of estimates (8) and (9) we get D̃(αt) − D̃(αt+1) ≥
min{(Δ̃t)2/(2D2), αt

UtΔ̃t/2, αt
LtΔ̃t/2}. The first term at the right hand side applies

when there is no clipping and, as just argued for MDM, clipping cannot go on indefi-
nitely. Thus, there must be a subsequence tj such that Δ̃tj → 0 and, by Proposition 3,
W tj → W ∗, since

∑
i αt

i can be shown to be bounded [6]. ��
Now convergence of the full W t sequence is proved just as in the MDM case, with
Proposition 4 and (13).

Theorem 2. The W t updates of the SMO algorithm converge to W ∗ as t goes to ∞.

4 Conclusions and Further Work

In this work we present, for linearly separable samples, simple proofs of convergence
for the GSK and MDM algorithms for NPP, and the SMO algorithm for SVM training,
all three under a common framework. This results in much simpler proofs for GSK and
MDM than the ones in [1] and [2], and also generalize them to the NPP case. Our proof
for SMO is also simpler than the ones given in [6] and [5], but in its present form it is
only applicable to linearly–separable tasks. We are currently working on its extension
to the non–linearly separable case.
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