
Faster Directions for Second Order SMO

Álvaro Barbero � and José R. Dorronsoro�

Universidad Autómoma de Madrid and Instituto de Ingenieŕıa del Conocimiento
Francisco Tomás y Valiente 11, 28049, Madrid, Spain

{alvaro.barbero@,jose.dorronsoro@}uam.es

Abstract. Second order SMO represents the state–of–the–art in SVM
training for moderate size problems. In it, the solution is attained by
solving a series of subproblems which are optimized w.r.t just a pair of
multipliers. In this paper we will illustrate how SMO works in a two stage
fashion, setting first the values of the bounded multipliers to the penalty
factor C and proceeding then to adjust the non–bounded multipliers.
Furthermore, during this second stage the selected pairs for update often
appear repeatedly during the algorithm. Taking advantage of this, we
shall propose a procedure to combine previously used descent directions
that results in much fewer iterations in this second stage and that may
also lead to noticeable savings in kernel operations.

1 Introduction

Given a training sample S = {(Xi, yi) : i = 1, . . . , N} with yi = ±1, SVM
training seeks [1] to find a separating hyperplane in the form W · X + b with
maximal margin by solving the dual problem

min
α

f(α) =
1
2
αT Qα − e · α s.t.

{
0 ≤ α ≤ C
α · y = 0 (1)

where Q = (Qij) with Qij = yiyjXi · Xj , e is an all-ones vector, αT denotes
the transpose of α, · indicates the standard dot product and C is a penalty
parameter. Once the problem is solved, the primal problem solution can be
obtained as well using W =

∑
i αiyiXi and computing b though the Karush–

Kuhn–Tucker optimality conditions [1]. At first sight, this problem is a relatively
simple constrained quadratic minimization problem and, as such, easy to solve.
However, dim(α) = N and so we may not be able to store the full matrix
Q into memory, even for moderate size problems. Furthermore, non-linearity is
usually introduced in the SVM by using the kernel trick as Qij = yiyjK(Xi, Xj),
making the entries of Q costly to evaluate, as non-linear Kernel Operations
(KOs) are required. These conditions make impossible to apply standard and
fast inner point solvers to the problem. The solution to this are decomposition

� All authors have been partially supported by Spain’s TIN 2007–66862 and “Cátedra
IIC Modelado y Prediccion”. The first author is kindly supported by the FPU–MEC
grant reference AP2006–02285.

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part II, LNCS 6353, pp. 30–39, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Faster Directions for Second Order SMO 31

methods, where iteratively a series of subproblems are solved, each of them
involving only a small number q of the multipliers. Among the most effective
decomposition procedures is Joachims’ SVM–Light [2] where the subproblem
multipliers are chosen using gradient information. For q = 2 SVM–Light reduces
to Sequential Minimal Optimization (SMO) [3], that iteratively changes α to
α′ = α + δ(eU − yUyLeL) for appropriate L, U and δ (see below).

However, decomposition methods are not problem free, because as we will
see, the gradient of f(α) needs to be updated at every iteration, which requires
at least N × q KOs. Therefore, if the number of iterations does not decrease
substantially, the cost in KOs of a q–multiplier procedure may degrade as q
grows [4]. The SMO method has a cost of 2N KOs per iteration and benefits from
the ability of solving its corresponding subproblems in closed form. Therefore,
as implemented for instance in the LIBSVM package [5] (also known as second
order SMO) is often the most efficient choice, at least for moderate size problems.

In the experimental use of SMO there are two folk observations. The first one
is that the initial iterations of second order SMO concentrate predominantly on
the bounded multipliers, i.e., those αi for which at the optimum α∗

i = C, as their
number increases until it becomes stable. Then SMO focuses on the unbounded
multipliers, which are adjusted to arrive at their optimal values 0 < α∗

i < C.
The decrease of f(α) is very fast in the first phase but much slower in the second
one. The second observation is that there are often several pairs that are selected
repeatedly, particularly as SMO training advances. These observations suggest
that, in order to improve the speed of SMO, one should concentrate in this second
stage and try to exploit the repeated pairs to derive better descent directions.

In this paper we present an improvement over SMO, which constructs accel-
erating directions much in the way the Hooke–Jeeves (H–J) method improves
cyclic coordinate descent [6], therefore allowing for updating directions unavail-
able to standard SMO while keeping the burden in KOs under control. Whereas
in H–J an accelerating direction is built after a fixed number of iterations, here
we will attempt to do so each time an updating pair of multipliers reappears
during the optimization process. We shall briefly review first and second order
SMO in section 2 and in section 3 we will give the details of our accelerated
version. Both second order SMO procedures are compared in section 4 and the
paper ends with a short discussion.

2 First and Second Order SMO

In principle, the SMO updates would be of the form α′ = α + δUeU + δLeL,
where ei is an all-zeros vector except for the i− th component which is valued 1,
i.e. only two coefficients are allowed to change. However the constraint y ·α = 0
implies that δLyL + δUyU = 0; that is, δL = −δUyLyU . Therefore, the SMO
updates become α′ = α + δ(eU − yUyLeL) where we write δ instead of δU . Note
that this update can be thought as performing a step of size δ in the direction
dU,L = (eU − yUyLeL). As a consequence of this and if we ignore the problem’s
constraints for the moment, by solving ∂

∂δ f(α + δdU,L) = 0 we obtain optimal
an step δ∗ as



32 Á. Barbero and J.R. Dorronsoro

δ∗ =
dU,L · (α − Qα)

dT
U,LQdU,L

=
−dU,L · ∇f(α)

dT
U,LQdU,L

= −yU
ΔU,L

ZU,L
= −yUλ∗ (2)

where ∇f(α) stands for the gradient of f(α) and we write ΔU,L = yU∇f(α)U −
yL∇f(α)L, ZU,L = dT

U,LQdU,L = K(XU , XU ) + K(XL, XL) − 2K(XL, XU ) and
λ∗ = ΔU,L/ZU,L. The corresponding multiplier updates can be expressed as
α′

L = αL + yLλ∗, α′
U = αU − yUλ∗ and α′

j = αj for any other j.
Several proposals can be found in the literature regarding how to choose the

updating pair (L, U). In the so-called first order SMO, also known as Mod-
ification 2 [3], L and U are chosen as the pair that most violates at α the
Karush–Kuhn–Tucker optimality conditions, i.e.

L = arg minj{yj∇f(α)j : j ∈ IL}, U = arg maxj{yj∇f(α)j : j ∈ IU}, (3)
IL = {j|(yj = −1, αj > 0) or (yj = 1, αj < C)},
IU = {j|(yj = −1, αj < C) or (yj = 1, αj > 0)}. .

Notice that this choice implies ΔU,L > 0 and λ∗ > 0, and the restrictions on the
α multipliers are needed so that we have 0 ≤ α′

L ≤ C, 0 ≤ α′
U ≤ C. Moreover,

the initial λ∗ value given by (2) may have to be clipped down so that these
bounds hold.

Note also that, since ΔU,L = yU∇f(α)U − yL∇f(α)L, we have ΔU,L ≥ Δj,i

for any other feasible direction dj,i, and it follows that the most violating pair
U, L choice also gives the feasible direction more aligned with ∇f(α). In other
words, dU,L is the best first order feasible descent direction. However, if no
clipping is needed for λ∗, is is easy to see [7] that the gain can also be written

as f(α) − f(α′) = Δ2
U,L

ZU,L
. This suggests a second order choice of L, U (see [7] for

more details) as the pair for which the full gain is maximal. To avoid a nested
loop on L and U , one chooses first L as in (3) and then U is selected as

U = arg maxj

{
Δ2

j,L

ZU,L
: j ∈ IU , Δj,L > 0

}
. (4)

These second order index choices result in a much faster convergence of SMO
and are implemented, for instance, in the latest versions of LIBSVM [5], the
SVM training tool that can be considered representative of the current state–
of–the–art.

To close this section we remark that we have to keep track of the gradient in
order to compute the optimal L, U indices at each. After an α update we can
also update the gradient efficiently using

∇f(α + δd) = ∇f(α) + δQd = ∇f(α) + δ(QU − yUyLQL),

where Qi stands for the i-th column of Q. It follows that SMO requires essentially
2N KOs at each iteration.



Faster Directions for Second Order SMO 33

3 Better Directions for Second Order SMO

In this section we will propose a way to improve SMO convergence speed by
combining recently used descent directions. Let dt = dLt,Ut denote a certain
update vector that we assume has appeared again after K steps from a former
use as the update vector dt−K ; in other words, we are assuming that Lt =
Lt−K , Ut = Ut−K . Consider then v =

∑K
j=1 δt−jd

t−j , with δt−j the optimal
updating coefficient at step t − j.

Clearly, v would have been a better descent direction at αt−K than dt−K ,
as we would have arrived to αt (or another α′ such that f(α′) < f(αt)) in
just one iteration, i.e., it is able to provide greater decrease in f(α). Thus, it
makes sense to consider using v as a descent direction at αT alternative to dt,
as it might still be a better direction; to choose the best option we have to
compare the ∂1 = −∇f(αt) ·dt and ∂2 = −∇f(αt) · v values, i.e., the directional
derivatives at αt with respect dt and v respectively, and decide on the most
negative one. That is, we will be choosing the direction with largest negative
steep. The computation of ∂1 is straightforward, as ∂1 = ΔU,L, and that of ∂2

is only slightly more complex. In fact, we have

∇f(αt) · v =
K∑

j=1

δt−j∇f(αt) · dT−j

=
K∑

j=1

δt−j(∇f(αt)U − yUt−j yLt−j∇f(αt)L)

which can be computed without needing any KO. Once we have decided to
perform an update in the v direction, observe that the value of the objective
function will change as f(α + λv) = f(α) + 1

2λ2vT Qv + δvT Qα − δv · α, and so
the optimal stepsize ignoring constraints can be obtained as

λo =
−v · ∇f(α)

vT Qv
=

−∂2

vT Qv
. (5)

As v is sparse by construction, at most 2K entries are non-zero, and so vT Qv can
be computed efficiently by defining Ri = Qiv =

∑
vj �=0 Qijvj and using vT Qv =∑

vj �=0 vjRj , which requires at most 2KN kernel operations. Furthermore the
vector R can be used to update the gradient as ∇f(α + λv) = ∇f(α) + λR.

Now, taking the constraints back into account note that by using v as updating
direction the α will be modified as αt+1

i = αt
i + λvi ∀ vi �= 0. Therefore we

must have 0 ≤ αt+1
i = αt

i + λvi ≤ C. Thus, if vi > 0, the relevant bound
is the right one, while the left one has to be met when vi < 0. Define MC =
min {(C − αt

i)/vi : vi > 0} and M0 = min {−αt
i/vi : vi < 0}. By clipping λo from

above as λ∗ = min {λo, M0, MC} we guarantee feasibility.
Finally, to detect a repetition of the Lt, Ut indices, we keep them in a cir-

cular queue Q which is searched from its beginning each time a new pair L, U
is selected. If the search fails we insert the pair in Q, but if a previous copy



34 Á. Barbero and J.R. Dorronsoro

(Lt−K , Ut−K) is found we check, as mentioned before, whether the updating
vector V actually defines a descent direction with larger steep than the stan-
dard updating direction. If it does so, we will perform a v update and reset
Q afterwards. Conversely, if it does not, we will remove the previous appear-
ance (Lt−K , Ut−K) from Q and, in order to keep the temporal structure of the
(L, U) index pairs in Q, we will also remove all pairs from Q’s front up to the
(Lt−K , Ut−K) position. All in all, the overall cost of a v update can be regarded
as O(2KN) KOs plus other non-KOs operations involving the queue manage-
ment, which results in roughly K times the cost of standard SMO. Therefore a
global speed-up will only happen if the total number iterations the algorithm
requires to achieve convergence is sufficiently reduced to make up for the ad-
ditional costs for these accelerating iterations. An outline of the algorithm is
presented in 1.

4 Numerical Experiments

In this section we will compare the performance of standard second order SMO
(SO) and of our accelerated procedure (AccSO) on the datasets taken from
G. Rätsch’s benchmark repository [8]. Unless otherwise stated, we shall always
use Gaussian kernels with parameter values C and 2σ2 as reported in [8]. The
stopping criterion will be that the maximum KKT violating value Δ be smaller
than a tolerance ε = 10−5 and the initial α multipliers values are 0.

First we will briefly illustrate the two–stage nature of SO. Figure 1 shows
the evolution of the number of multipliers at the C bound (upper bounded)
and of unbounded multipliers (0 < α < C) for each of the datasets when SO
is applied. A general trend among datasets can be noticed, in which during a
first phase of the algorithm most of the updates are displacing multipliers to the
upper bound, while a lesser quantity get moved to an unbounded state. Next,

1% 10% 100%
0

10

20

30
Thyroid

1% 10% 100%
0

20

40

60
Heart

1% 10% 100%
0

20

40

60
Titanic

1% 10% 100%
0

20

40

60

80
Breast

1% 10% 100%
0

100

200

300
Diabetes

1% 10% 100%
0

100

200

300

400
German

1% 10% 100%
0

200

400

600
Flare

1% 10%100%
0

50

100

150

200
Image

1% 10% 100%
0

200

400

600

800
Splice

1% 10%100%
0

20

40

60

80
Banana

1% 10% 100%
0

50

100

150

200
Ringnorm

1% 10% 100%
0

20

40

60

80
Twonorm

1% 10% 100%
0

50

100

150
Waveform

 

 

Upper bounded

Unbounded

Fig. 1. Evolution of the number of bounded and unbounded α coefficients for every
dataset. The x-axis represents the percentage of iterations performed by the algorithm
(in logarithmic scale), while the y-axis stands for the number of upper bounded or
unbounded coefficients.



Faster Directions for Second Order SMO 35

Algorithm 1. Accelerated SMO
1: initialize α = 0, ∇f(α) = 0p, Q = ∅ ;

2: while (stopping condition == FALSE) do

3: find (L, U) second (4) order SMO rules ;

4: if pair (L, U) is found in Q then

5: build accelerating direction v ;

6: if v is feasible and ∂2 < ∂1 then

7: compute R, optimal unbounded stepsize λo using (5) ;

8: clip λo to meet constraints → λ∗ ;

9: α = α + λ∗v, ∇f(α) = ∇f(α) + λ∗R, Q = ∅ ;

10: else

11: remove (L, U) and previous updates from Q ;

12: perform standard SMO update using (L, U), add (L, U) to Q ;

13: end if

14: else

15: perform standard SMO update using (L, U), add (L, U) to Q ;

16: end if

17: end while

the number of upper bounded and unbounded multipliers becomes stable, and
only slight changes in their numbers are made until the end of the algorithm.
Notice also that some datasets differ from this behaviour. In the case of Heart,
Diabetes and Flare datasets unbounded multipliers are only generated after a
number of iterations have been completed. On the other hand, in Splice and
Ringnorm datasets no upper bounded coefficients appear at all. As we will later
see, these datasets present no improvement under our procedure.

While we cannot give a rigorous argument for the generalized two–phase
regime, notice that at the early stages of SMO any pair L, U would be eligi-
ble and the gain will be large when we have XL � XU but yL �= yU , as ZL,U � 0
and ΔL,U = yU∇f(α)U − yL∇f(α)L = W · XU − yU − (W · XL − yL) � −2yU .
If this is the case, either XL or XU will not be correctly classified and the cor-
responding multiplier will be set to C and it is likely that it will stay there. On
the other hand, if we set O(α) = {i : αi = 0} and C(α) = {i : αi = C}, it
can be shown [9] that for a large enough t0 we will have O(αt) ⊂ O(α∗) and
C(αt) ⊂ C(α∗) for t ≥ t0, with α∗ the optimal multiplier vector. Thus, the sta-
bilization of the number of 0 and C bounded multipliers is to be expected (this
is also the reason why shrinking works).

Turning now our attention to our method, before performing any compar-
isons we should note that this method introduces a new parameter τ into the
SVM training, which stands for the maximum length of the circular queue Q.
Small values of τ might overlook some (L, U) pair repetitions, while large τ val-
ues might detect lengthy, spurious cycles which provide small improvement at
a high computational cost. To analyse the influence of this parameter we run
our method for a range of τ values from 1 to 100 and measure the percentage
of reduction in KOs when compared against the standard second order proce-
dure, computed as p = 100KOs(AccSO)

KOs(SO) . Results are plotted in figure 2 for all



36 Á. Barbero and J.R. Dorronsoro

0 10 20 30 40 50 60 70 80 90 100
60

70

80

90

100

110

120

Queue size

P
er

ce
nt

ag
e 

of
 K

O
s 

re
du

ct
io

n

Queue size impact on performance

 

 
Mean across datasets
Datasets performance

Fig. 2. Percentage of reduction achieved as a function of the queue size. Reductions
for each dataset are plotted as dashed lines, while the solid line stands for an average
reduction across datasets.

the datasets, along a global reduction value averaged across datasets. It can be
observed that in most of the datasets AccSO obtains an improvement in the
number of KOs, although there is no reduction or even a worsening in perfor-
mance in some cases. Note also that on average a good choice of τ seems to be
any value in the interval [20 − 35]. However, it should be pointed out that the

Table 1. Average and std. deviation values of the number of KOs (in thousands)
and execution times (in milliseconds) by our second order SMO code (SO) and its
accelerated version (AccSO) ; the reduction in % also is given.

KOs Running time

Dataset SO AccSO Red. SO AccSO Red.

Banana 13576 ± 8377 8751 ± 4813 64,5

√
456,3 ± 246,88 306,74 ± 146,09 67,22

√
Image 56304 ± 8776 41728 ± 5336 74,1

√
1666,87 ± 258,06 1605,91 ± 205,26 96,34

√
Breast 703 ± 270 543 ± 181 77,3

√
27,87 ± 10,7 20,76 ± 6,89 74,49

√
Heart 131 ± 36 106 ± 23 81,2

√
5,39 ± 1,53 4,31 ± 0,94 79,96

√
Flare 1130 ± 594 1047 ± 420 92,6

√
49,18 ± 26,58 46,51 ± 19,22 94,57

√
German 2595 ± 269 2444 ± 229 94,2

√
107,23 ± 16,8 106,03 ± 14,33 98,88

√
Titanic 50 ± 9 48 ± 7 94,4

√
1,89 ± 0,35 1,8 ± 0,28 95,24

√
Thyroid 64 ± 20 61 ± 18 95,4

√
2,28 ± 0,74 2,15 ± 0,65 94,3

√
Twonorm 365 ± 49 356 ± 46 97,7

√
15,15 ± 3,16 14,37 ± 3 94,85

√
Diabetes 451 ± 58 441 ± 52 97,9

√
18,27 ± 2,56 17,72 ± 2,2 96,99

√
Splice 9613 ± 399 9613 ± 399 100,0 ≈ 312,37 ± 37,86 308,01 ± 34,34 98,6

√
Ringnorm 487 ± 41 487 ± 41 100,0 ≈ 21,46 ± 3,38 21,57 ± 3,41 100,51 ×
Waveform 340 ± 39 347 ± 39 102,2 × 13,7 ± 2,6 13,9 ± 2,59 101,46 ×



Faster Directions for Second Order SMO 37

queue management also implies a computational burden scaling proportionally
to the queue size. This extra cost, although small in comparison to the cost of
computing KOs, cannot be neglected. Hence, we shall use a value of τ = 20 for
the rest of our experiments.

Table 1 shows the detailed results in KOs for that selection of τ : the table’s
datasets are sorted with respect to the percentage of reduction achieved. Addi-
tionally, a

√
symbol denotes a significant improvement in a Wilcoxon rank–sum

test at a 10% level, whereas × stands for significant worsening and ≈ for no
significant difference. AccSO requires more KOs for the Waveform dataset, ties
with SO over Splice and Ringnorm and wins in the other ten datasets. We can
thus conclude that AccSO may lead to sizeable savings in KOs when compared
with SO and, most likely, with the state–of–the–art SMO packages. Moreover,
when this is not the case, AccSO does not seem to add such a great complexity
burden as to discourage its use. Additionally, also in table 1 we provide the cor-
responding execution times, where we can check that the amount of reduction
is roughly the same as the observed in KOs for most of the datasets.

lo
g 10

 C

log
10

 σ

KOs Breast

 

 

−1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

50

55

60

65

70

75

80

85

90

95

100

105

(a)

lo
g 10

 C

log
10

 σ

KOs Flare

 

 

−1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

30

40

50

60

70

80

90

100

(b)

lo
g 10

 C

log
10

 σ

KOs Image

 

 

−1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

65

70

75

80

85

90

95

100

(c)

lo
g 10

 C

log
10

 σ

KOs Waveform

 

 

−1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

65

70

75

80

85

90

95

100

105

(d)

Fig. 3. Percentage of KOs reduction in AccSO for different settings of C and σ pa-
rameters. The squared dots represent the values recommended in [8] for the dataset.



38 Á. Barbero and J.R. Dorronsoro

Finally, it is of interest to test whether different values for the SVM parameters
C and σ would provide a different degree of improvement. To do this we measure
the performance of SO and AccSO for a grid of C and σ values in the range
[0.1, 1000]. We depict the percentage of reduction achieved for this range of values
as contour maps in figure 3 for the datasets Breast, Flare, Image and Waveform,
the rest of the datasets showing similar behaviours. It can be observed that
the degree of reduction achieved by the method depends heavily on the SVM
parameters, the best results being obtained when both of them have large values.
Note that C and σ are normally selected through a cross–validation procedure,
and so their values will depend on the problem at hand. So, AccSO might be
able to provide larger improvements in performance depending on the dataset.
On the other hand, note that for most of the parameter space either a notable
reduction or no reduction at all is obtained. Worsenings only appear in small
areas. Therefore, it is advisable to apply AccSO over SO regardless of the dataset,
as generally no increase in computational cost will take place. Also, due to these
same reasons, the method could be specially useful to improve running times of
a cross-validation procedure that requires training the SVM for a large number
of points in the parameter space.

5 Discussion and Conclusions

While decomposition methods for SVM training result in less iterations as the
size of the working set grows, this does not translate automatically in a smaller
number of kernel operations (KOs), that in fact may increase for larger working
sets. The practical consequence of this is that second order SMO, as implemented
for instance in the LIBSVM packages, is often the best option to build SVMs on
problems with moderately large sample sizes. In any case, as training advances,
the convergence speed of second order SMO decreases, something that is usually
accompanied by the repeated appearance of some descent directions.

In this work we have numerically shown how there is a further speed gain in
second order SMO if its standard descent directions are replaced, when appropri-
ate, by the combination of the successive descent steps between two appearances
of a repeated index pair. We thus arrive at a simple procedure to accelerate sec-
ond order SMO training.

The question that remains is the reason for this faster convergence. While we
do not have a full answer at this moment, there are some facts that may partially
explain why this is so. As pointed out above, SMO uses the dL,U = eU −yUyLeL

vectors as descent directions. Thus, it can be seen as a kind of coordinate descent
on the di,j meta–coordinate system. If we define the N − 1 vectors χi = di,1,
2 ≤ i ≤ N , they are clearly linearly independent and we have dL,1 = χL and
dL,U = χL −χU . Thus the subspace spanned by the di,j directions used in SMO
is at most N − 1 dimensional but if we center our attention on SMO’s second
training phase, the subspace dimension would be much smaller, as we replace N
by the number of unbounded support vectors.

On the coordinates associated to these directions, first order SMO can be
seen as a kind of Gauss–Southwell (GS) minimization method, as the dL,U



Faster Directions for Second Order SMO 39

coordinate chosen is precisely the one associated to the largest negative gradient
component. Second order SMO becomes then an improved GS variant. The GS
method is essentially an improvement on basic cyclic coordinate descent, where
one sequentially explores the coordinate descent directions (see [6], chapter 8).
A frequent observation on these methods is that their simple descent directions
can be sequentially combined to obtain a new direction that leads to a faster
convergence. Examples of this are the acceleration step for cyclic coordinate
descent or the Hooke–Jeeves (H–J) method [6] that for a D–dimensional space
combines D standard coordinate descent steps with a single step on a certain
combination of previously taken directions. As such, it cannot be applied in an
SMO setting, as the dimension D might be too large, but our method detects
direction cycles and combines the previously taken directions in a way not too
far away from those in the H–J algorithm and, as it is the case with H–J, that
leads to a convergence speed up.

In any case, further work is required to obtain insights into the method, that
may also suggest other ways to improve second order SMO performance.

References

1. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization and Beyond. In: Machine Learning. MIT Press, Cambridge
(2002)

2. Joachims, T.: Making Large-Scale Support Vector Machine Learning Practical. In:
Advances in Kernel Methods: Support Vector Learning, pp. 169–184. MIT Press,
Cambridge (1999)

3. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements
to Platt’s SMO Algorithm for SVM Classifier Design. Neural Computation 13(3),
637–649 (2001)

4. Collobert, R., Bengio, S.: Svmtorch: Support vector machines for large-scale regres-
sion problems. Journal of Machine Learning Research 1, 143–160 (2001)

5. Chang, C.C., Lin, C.J.: LIBSVM: a Library for Support Vector Machines (2001)
6. Bazaraa, M., Sherali, D., Shetty, C.: Nonlinear Programming: Theory and Algo-

rithms. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley,
Chichester (1992)

7. Fan, R.E., Chen, P.H., Lin, C.J.: Working Set Selection using Second Order Informa-
tion for Training Support Vector Machines. Journal of Machine Learning Research 6,
1889–1918 (2005)

8. Rätsch, G.: Benchmark Repository (2000), Datasets available at
http://ida.first.fhg.de/projects/bench/benchmarks.htm

9. Stefano, L., Laura, P., Risi, A., Sciandrone, M.: A convergent hybrid decomposition
algorithm model for svm training. IEEE Transactions on Neural Networks 20(6),
1055–1060 (2009)

http://ida.first.fhg.de/projects/bench/benchmarks.htm

	Faster Directions for Second Order SMO
	Introduction
	First and Second Order SMO
	Better Directions for Second Order SMO
	Numerical Experiments
	Discussion and Conclusions
	References


