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Abstract. With the term super-resolution we refer to the problem of
reconstructing an image of higher resolution than that of unregistered
and degraded observations. Typically, the reconstruction is based on the
inversion of the observation generation model. In this paper this prob-
lem is formulated using a variational Bayesian inference framework and
an edge-preserving image prior. A novel super-resolution algorithm is
proposed, which is derived using a modification of the constrained vari-
ational inference methodology which infers the posteriors of the model
variables and selects automatically all the model parameters. This algo-
rithm is very intensive computationally, thus, it is accelerated by har-
nessing the computational power of a graphics processor unit (GPU).
Examples are presented with both synthetic and real images that demon-
strate the advantages of the proposed framework as compared to other
state-of-the-art methods.
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1 Introduction

The problem of super-resolution is defined as obtaining an image with enhanced
resolution from a set of lower resolution unregistered degraded images. The
super-resolution problem has a long history. In this paper we will not attempt
overview it; for this purpose the interested reader is referred to [1], [2] and [3].
An important category of methodologies used for this problem formulates it
as an ill posed reconstruction problem. Thus, prior information is introduced
(regularization) to complement the available observations and reconstruct the
super-resolved image.

One powerful stochastic methodology to apply regularized reconstruction to
inverse problems is Bayesian inference [4]. The main advantage of Bayesian in-
ference is that the unknown image is treated as a random variable and the poste-
rior pdf given the observations is found. Thus, unlike the maximum a posteriori
(MAP) estimation approach, which only provides point estimates, Bayesian in-
ference provides variance information also about the estimate [4]. However, the
application of Bayesian inference is difficult when complex models and large data
sets are used. Therefore, MAP estimation has been much more popular for image
super-resolution problems [3].
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In this work the Bayesian inference framework using the variational approxi-
mation is applied for the first time to the image super-resolution problem. In this
formulation a spatially varying edge-preserving image prior is used. This prior
has been used previously with success for the image restoration problem in a
Bayesian inference framework [8]. Bayesian inference is easier for image restora-
tion than for super-resolution because the imaging operator in restoration is a
simple convolutional operator. In contrast, in super-resolution the imaging oper-
ator is more complex and is not convolutional [3]. Thus, for the super-resolution
problem a similar in spirit prior was applied only in a MAP framework [5].

Another novel aspect of this work is the use of graphics processor unit (GPU)
to speed up the proposed super-resolution algorithm for large images. Specifi-
cally, a parallel CUDA [10] implementation of the linear solver in this algorithm
was used to speed up the computations required.

The rest of this paper is organized as follows. In Sect. 2 and 3 the imaging
model and the proposed image prior models are presented, respectively. In Sect.
4 the variational algorithm is derived. In Sect. 5 the implementation details of
the GPU linear solver used to accelerate our algorithm, and the initialization
method of the proposed algorithm are presented. In Sect. 6 experiments with
synthetic and real data that demonstrate the properties of our algorithm are
presented. Finally, in Sect. 7 conclusions and thoughts for future research are
provided.

2 Imaging Model

In what follows for simplicity we use one-dimensional notation. A linear imaging
model is assumed according to which P low-resolution images (observations)
y1,y2, ...,yP of size NL × 1 are produced by operating on the high-resolution
image x of size NH ×1. Thus the decimation factor d can be defined as the ratio
d = NH/NL. Each observation is produced by first translating and rotating the
high-resolution image, then blurring and decimating it by the factor d. Lastly, a
noise vector nk, k = 1, ..., P is added at each observation. This is mathematically
expressed by the following P equations:

yk = Bk(ζk)x + nk = DHW(ζk)x + nk, k = 1, ..., P , (1)

where Bk = Bk(θk) = DHW(θk), D is the known decimation matrix of size
NL×NH , H is the square NH ×NH known convolutional blurring matrix that is
assumed circulant and W(ζk) is the NH×NH geometric transformation operator
that translates and rotates the image. For the k − th observation, ζk = [γk, δk]
is the parameter vector that contains the unknown rotation angle γk and the
unknown translation parameter δk. Lastly, nk is the NH ×NH noise vector that
is modeled as white Gaussian with the same (unknown) precision β for each
observation, i.e. nk ∼ N (0, βI), where 0 and I are the NH × NH zero and
identity matrices, respectively.
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Let y be a PNL × 1 vector, containing the P low-resolution images: y =[
yT

1 ,y
T
2 , . . . ,y

T
P

]T . Using this notation, the observations are given by:

y = Bx + n , (2)

where n =
[
nT

1 ,n
T
2 , . . . ,n

T
P

]T and B is the PNL ×NH imaging operator:

B =
[
BT

1 ,B
T
2 , . . . ,B

T
P

]T
.

Lastly, in this work, to model the geometric transformation (rotation-translation)
operation the Shannon (sinc) interpolator is used, which is linear and thus can
be represented by the matrix W.

3 Image Model

In what follows we introduce the image prior for the high-resolution image x of
the imaging model described in Sect. 2. We first define K linear convolutional
operators (filters) Q1, . . . ,QK of size NH × NH . These filters are high-pass,
such as first order differences in the vertical and horizontal direction. The filter
outputs ε = (εT

1 , . . . , ε
T
K)T are produced according to the following K equations:

εl = Qlx, l = 1, . . . ,K . (3)

Then, it is assumed that all εl(i) for every i are iid zero mean Student’s-t dis-
tributed with parameters λl and νl:

p(εl(i)) = St(0;λl, νl) =
Γ (νl/2 + 1/2)

Γ (νl/2)

(
λl

νl

)νl/2 (
1 +

λlεl(i)2

νl

)−νl/2−1/2

,

for l = 1, . . . ,K, where the parameters λl and νl are different for every filter but
remain the constant as the spatial location i varies. To analyze the properties of
the Student’s-t distribution we write it down as the integral:

p(εl(i)) =
∫

al(i)

p(εl(i)|al(i))p(al(i))dal(i) (4)

where al(i)’s are random variables that are iid Gamma distributed p(al(i)) =
Gamma(νl, νl) , and p(εl(i)|al(i)) = N (

0, al(i)−1
)
. The Student’s-t distribution

can be viewed as an infinite mixture of zero mean Gaussians [4] with different
precisions. Thus, it can be heavy-tailed. Therefore, when used as a prior on
the outputs of the Ql high-pass filters it allows reconstructed images to have
sharp edges. In contrast Gaussian based models have the tendency to smooth
out edges.
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4 Variational Inference

The variational methodology for Bayesian inference proposed in [8] for the imag-
ing model in equation (2) is applicable only when the imaging operator B is
convolutional and thus commutes with Ql, which is not the case for the super-
resolution problem. In this section we present a modification of the variational
algorithm in [8] which overcomes this difficulty, it is more general and can be
applied to any linear imaging model of the form in (2).

As in [8], to perform Bayesian inference we introduce an alternative imaging
model, which is derived by applying the operators Ql to (2):

y = BQ−1
l εl + n, l = 1, . . . ,K, (5)

where we have used the relationships x = Q−1
l εl, l = 1, . . . ,K, stemming from

the definitions of the εl’s in 3. Here, the key difference from [8] is that we
avoided the multiplication with the operators Ql but we embedded directly the
relationships between the image and the filter outputs. This is the main reason
for which the following derivation of the variational algorithm is novel and differs
from that in [8].

With this imaging model, we work in the field of the filter outputs, and we
treat ε = (εT

1 , . . . , ε
T
K)T , where εl = (εl(1), . . . , εk(NH))T , for l = 1, . . . ,K and

a = (a1, . . . ,aK), where al = (al(1), . . . , al(NH)), for l = 1, . . . ,K, as hidden
variables. Then, according to Bayesian inference we find the posterior distri-
butions for the hidden variables and estimate the parameters θ = λk, νk. The
marginal of the observations p(y; θ), which is required to find the posteriors of
the hidden variables is hard to compute [4]. More specifically, the integral

p(y) =
∫

ε,a

p(y, ε,a)dεda , p(y, ε, a) = p(y|ε)p(ε|a)p(a) , (6)

p(y|ε) =
K∏

l=1

p(y|εl), p(y|εl) = N
(
BQ−1

l εl, βI
)
, (7)

p(ε|a) =
K∏

l=1

N∏

i=1

p(εl(i)|al(i)), p(a) =
K∏

l=1

NH∏

i=1

p(al(i)) ,

is intractable. Notice here that we have combined the K observation equations
of (5) in one, by assuming that the data likelihood of a single observation is
given by the product: p(y|ε) =

∏K
l=1 p(y|εl). This idea stems from the principal

of opinion pooling proposed in [6] that combines multiple probabilities.
The variational methodology, bypasses the difficulty of computing the integral

in (6) and maximizes a lower bound L(q(ε, a), θ) that can be found instead of
the log-likelihood of the observations log p(y; θ) [4]. This bound is obtained by
subtracting from log p(y; θ) the Kullback-Leibler divergence, which is always
positive, between an arbitrary q(ε,a) and p(ε, a|y; θ).

When q(ε,a) = p(ε,a|y; θ), this bound is maximized and L(q(ε, a), θ) =
log p(y; θ). Because the exact posterior p(ε,a|y; θ) = p(ε,a,y;θ)

p(y;θ) cannot be found
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we are forced to find an approximation of it. The mean field approximation is a
commonly used approach to maximize the variational bound w.r.t. q(ε,a) and
θ [4]. According to this approach the hidden variables are assumed to be inde-
pendent, i.e. q(ε,a) = q(ε)q(a). Thus, next we derive the variational algorithm
that maximizes the bound L(q(ε)q(a), θ), aiming at maximizing approximately
the logarithm of the likelihood.

Unconstrained maximization of the bound L(q(ε)q(a), θ) is suboptimal for this
formulation. Thus, we resort the modified constrained variational approximation,
as explained above. In short, the goal is to combine all the information given by
theK observation equations of the new model in (5). According to this approach,
each q(εl) is constrained to have the form:

q(εl) = N(Qlm,QT
l RQl), (8)

where m is a NH × 1 vector, is taken as mean of the high-resolution image,
and R the NH ×NH its covariance matrix. Using this model the parameters m
and R are learned instead of q(εl) in the framework of the proposed constrained
variational methodology.

In the VE-step, the maximization of L(q(ε), q(a), θ) is performed with respect
to q(a), m and R keeping θ fixed, while in the VM-step, the maximization of
the same quantity is performed with respect to θ keeping q(a), m, and R fixed.
At the j-th iteration of the variational algorithm we have:

VE-step:

[mj ,Rj, qj(a)] = arg max
m,R,q(a)

L(q(ε;m,R), q(a), θj−1) (9)

VM-step:
θj = argmax

θ
L(qj(ε;m,R), qj(a), θ) (10)

The updates for the VE-Step are:

qj(εl;m,R) = N(Qlmj,QlRjQT
l ), (11)

mj = βRjBTy, Rj =

(

βBTB +
1
K

K∑

l=1

λj−1
l QT

l Aj−1
l Ql

)−1

. (12)

From the above equations it is clear that m merges information from all filters
Ql to produce the estimate of m which is used as the estimate of x.

Finally, the approximate posterior of a in the VE-step is given by

qj(a) =
K∏

l=1

NH∏

i=1

qj(al(i)) ,

qj(al(i)) = Gamma

(

al(i);
νj−1

l

2
+

1
2
,
νj−1

l

2
+
λj−1

l

2
uj(i)

)

, (13)
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uj(i) = (mj
l (i) + Cj

l (i, i)),m
j
l = Qlmj , Cj

l = QlRjQT
l ,

for l = 1, 2, . . . ,K, i = 1, 2, . . . , NH . Also, mj
l (i) is the i-th element of mj

l and
Cj

l (i, i) is the i-th diagonal element of Cj
l .

In the VM-step, the bound is maximized w.r.t the parameters. For λl we have
that the update formula is

λj
l =

N
∑N

i=1 < al(i) >qj(a) uj(i)
. (14)

Similarly, for νl, l = 1, 2, . . . ,K, we have that νj
l is taken as the root of the

function φ:

φ(νl) =
1
NH

NH∑

i=1

log < al(i) >qj(a) − 1
N

NH∑

i=1

< al(i) >qj(a) +ψ

(
νj−1

l

2
+

1
2

)

− log

(
νj−1

l

2
+ 2

)

− ψ
(νl

2

)
+ log

νl

2
+ 1 , (15)

where ψ is the digamma function. We find φ(νj
l ) = 0 numerically using the

bisection method.

5 Computational Implementation

In this section we describe some of the implementation details of the variational
algorithm derived in Sect. 4, given by (12), (14) and (15).

5.1 GPGPU Linear Solver

The most computationally intensive operation of our algorithm is the multipli-
cation of the matrix R−1 (its inverse is given by (12)), which is the matrix of the
linear system we aim to solve, with a vector p. To parallelize these operations,
we take advantage of the structure of R−1, which is composed by products and
sums of circulant and diagonal matrices and implement them efficiently on the
GPU using CUDA.

The multiplication of the diagonal matrix Al with a vector, can be viewed as
an element wise multiplication of two vectors and is parallelized very easily. For
the implementation of this operation, each thread running on the GPU performs
a multiplication of two elements.

The products of circulant matrices H and Ql with vectors is similarly straight
forward to parallelize, though it is slightly more complicated. We first note that
a circulant matrix can be diagonalized in the DFT domain. We use this diagonal
form and perform the operation with circulant matrices by alternating between
the spatial and frequency domain.

The computation of the diagonal elements Cj
l (i, i) in (13) is also a very

challenging computational task since the matrix R is of size NH × NH with
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NH = 65, 536 for 256× 256 high-resolution images. In this work a random sam-
pling Monte-Carlo method is used for this computation. Due to space constraints
we will not provide the details. However, generation of each sample requires the
solution of the linear system Rd = e where e is a random vector. The paral-
lelization described above is used for the solution of this system. However, this
computation is very expensive computationally and slows down significantly the
proposed algorithm. Thus, we also propose an algorithm which avoids this com-
putation.

5.2 Initialization

Initially, the image m and the noise variance β are set equal to the estimates
obtained from the application of the super-resolution algorithm in [9], where a
stationary simultaneously auto-regressive image prior is used. This algorithm is
very efficient because it can be implemented entirely in the DFT domain.

The registration parameters for the proposed algorithm are computed by the
BFGS [7] optimization by solving the following minimization problem:

ζ∗k = arg min
ζk

‖|WNL(ζk)yk − y1||22, k = 1, . . . , P , (16)

where WNL(ζk) is the low-resolution counterpart of W(θk) of size NL × NL.
Finite differences are used to compute the gradient required by this approach.

The overall algorithm proposed can be summarized as:

1. Find the registration parameters using (16).
2. Find the initial high-resolution image m0 and the noise variance β0 by using

the algorithm in [9]
3. Repeat the computations in (12), (14) and (15) until convergenece.

6 Numerical Experiments

In order to test the proposed methodology, we used both artificially generated
and real data. We compared the proposed algorithm with two previous state-
of-the-art algorithms. The total variation (TV) regularization proposed in [13]
and the non-stationary prior proposed in [5]. Both of these works deal with
the super-resolution problem, however, they assume an imaging model different
from (2). For a fair comparison we modify these algorithms to include the same
registration model and in addition we initialize then with the same procedure
described in Sect. 5. The non-stationary prior with the Maximum a Posterior
(MAP) proposed in [5] and the Majorization-Minimization (MM) in [13] are ab-
breviate as MMTV and NSMAP, respectively. Furthermore, we use the same
GPU linear solver described in Sect. 5 in order to solve the linear systems used
by these algorithms to reconstruct the high-resolution image. This is straight-
forward because the matrices of the linear systems are of the same form with
R−1. The model parameters for both algorithms were found by trial and error
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experiments, contrary to the proposed algorithm where the model parameters
are found automatically.

In order to conduct experiments where the ground truth is known, we used
synthetic data. One set of eight 128× 128 low-resolution images were generated
using the well-known ”Cameraman” image of size 256 × 256 according to the
imaging model given by (1), with decimation factor d = 2. One type of blur
and three types of noise were used (resulting in three image sets): uniform point
spread function (PSF) of size 5 × 5 and AWG noise corresponding to signal
to noise ratio (SNR) SNR = 40, 30 , and 20dB. This metric and the MSE
metric between the restored image and the original that was used to evaluate
the performance of the algorithm, are defined as

SNR = 10 log10

‖zi‖2
2

NHσ2
dB, MSE =

‖x− x̂‖2
2

NH
,

where σ2 is the variance of the additive noise and NH is the size of the zero
mean image zi and x and x̂ are the original and estimated images, respectively.

In Fig. 1a the low-resolution image of the experiment with uniform blur 5× 5
and SNR = 20 is shown. In Fig. 1 we show the super-resolved images (b) with
MMTV, (c) with NSMAP, (d) the herein proposed variational algorithm without
the diagonal elements Cj

l (i, i) labeled as ALG1 and (e) the herein proposed
variational algorithm with the diagonal elements Cj

l (i, i) labeled as ALG2.
In Table 1 we provide the MSE results for these three experiments. From

these results it is clear that the proposed algorithms provides superior results as
compared to MMTV and NSMAP.

Table 1. MSE’s for the experiments using synthetic data

Method SNR = 40 SNR = 30 SNR = 20

[13] 85 92 141
[5] 78 82 113

ALG1 63 72 95
ALG2 62 71 97

We also used the proposed super-resolution algorithm on a real data set that
includes four low-resolution degraded images that contain both translations and
rotations. One of them is shown in Fig. 2a. Each low-resolution image is of size
256 × 256. The 2× super-resolved images obtained by (b) MMTV, (c) NSMAP
and (d)-(e) the herein proposed variational algorithms are shown in Fig. 2.

We tested the proposed algorithms in terms of their speed also. The main body
of the algorithms was implemented in MATLAB (R2009a). The graphics chip
used is NVIDA’s GTX 285, which contains 240 CUDA cores, 1GB RAM and 1.47
GHz core clock frequency. For 256 × 256 image, the proposed algorithm ALG2
with use of the GPU takes about 60’ while the other three NSMAP, MMTV
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and ALG1 take about 1’. This large difference is due to the computation of the
diagonal elements Cj

l (i, i). The acheived speed up by running these algorithm
on the GPU was 8-10x as compared to using a CPU (Intel Core i7, 2.47Mhz).

(a)

(b) (c) (d) (e)

Fig. 1. (a) Low-resolution observation and 2× super-resolved images using: (b) MMTV,
(c) NSMAP, (d) and (e) and the herein proposed variational algorithms ALG1 and
ALG2

(a) (b) (c) (d) (e)

Fig. 2. (a) Low-resolution observation and 2× super-resolved images using: (b) MMTV,
(c) NSMAP and the proposed (d) ALG1 and (e) ALG2

7 Conclusions and Future work

We proposed a variational inference super-resolution algorithm where all the
model variables and parameters are estimated automatically. We demonstrated
numerical experiments that showed the superiority of the proposed methodol-
ogy. Precisely, the resolution of the super-resolved images shown in Fig. 1 and 2
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has greatly improved. Furthermore, the super-resolved images with the proposed
algorithm have better edge structure and are visually more pleasant. Also, the
MSE in Table 1 with the experiments on the artificial data the proposed algo-
rithm to be superior to all other tested algorithms.

The GPU implementation of the linear solver achieved up to a 10x speed-up
as compared to the CPU. This allowed us to estimate the diagonal elements of
the inverse of matrix, which gave significant better results in terms of MSE,
compared to other two state-of-the-art algorithms.
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