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Abstract—Dimensionality reduction via manifold learning offers 
an elegant representation of data whereby the high dimensional 
feature space is parameterized by a lower dimensional space 
where the data resides.  Sparse representations efficiently 
represent test patterns by sparse linear coefficients from a 
dictionary of training exemplars. Sparse representations have 
been adopted for classification purposes, but the resulting 
classifiers may have to deal with data in high dimensions and 
large dictionaries.  This paper analyzes the interaction between 
dimensionality reduction and sparse representations.  The 
proposed technique, called K-LGE, presents a unified framework 
which utilizes a semi-supervised variant of Linear extension of 
Graph Embedding with K-SVD dictionary learning.  An iterative 
procedure optimizes the dimensionality reduction matrix, sparse 
representation dictionary, sparse coefficients, and linear 
classifier.  Results are demonstrated in a wide variety of facial 
and activity recognition problems to demonstrate the robustness 
of our proposed method.   

Keywords- dimensionality reduction; manifold learning; sparse 
representation; facial analysis; activity recognition.  

I.  INTRODUCTION   
Given n data samples, x1, x2, …xn, each sample xi∈RD, 

stored in matrix X, X∈RDxn and D < n, Principal Component 
Analysis (PCA) and Linear Discriminant Analysis (LDA) are 
effective techniques for obtaining a lower dimensional 
representation of X.  During PCA or LDA, the top d 
eigenvectors are used in projection matrix U such that the low 
dimensional representation of X is Y=XTU, Y∈Rnxd.  Although 
these linear dimensionality reduction techniques produce 
meaningful results, we wish to find an alternate low dimension 
d such that d<<D.  Further, the underlying linearity assumption 
of PCA and LDA may be limiting when modeling the behavior 
of complex imagery such as face representations. 

Manifold learning techniques reduce the dimensionality of 
input data by identifying a non-linear lower dimensional space 
where the data resides [1, 2].  Methods include Isomap [3] and 
Locally Linear Embedding (LLE) [4].   In order to support the 
extension of the manifold model to new examples, linearized 
techniques called Linear extension of Graph Embedding (LGE) 
[5], solve a linear approximation of the non-linear object.  The 
dimensionality reduction offered by the LGE techniques 
generally affords d << D.  

The notion of Sparse Representations (SRs), or finding 
sparse solutions to underdetermined systems, has found 
applications in a variety of scientific fields.  The resulting 
sparse models are similar in nature to the network of neurons 
in V1, the first layer of the visual cortex in the human, and 
more generally, the mammalian brain [6, 7].  

In SR systems, images xi are efficiently represented by 
sparse linear coefficients from a dictionary Φ of overcomplete 
basis functions, where Φ∈RDxn.  SR solves for coefficients 
a∈Rn that satisfy the ℓ1 minimization problem x’=Φa.  It has 
been shown that under typical conditions, the minimal solution 
is the sparsest one [8, 9].  There have been several studies 
optimizing both the ℓ1 minimization [10, 11] as well as the 
selection of dictionary elements [12, 13].  In our work, we 
construct Φ from low dimensional samples Y, Φ∈Rdxn. 

Although the SR framework is designed for reconstruction 
purposes, it has been adapted successfully for classification 
problems. Wright et al. [14, 15] achieved state-of-the-art facial 
recognition results by feeding the a coefficients directly to a 
classifier.  In this framework, the dominant signal always 
prevails, but it could produce some unintended effects.  For 
example, when trying to extract facial identity, pose variation 
may contaminate or even dominate the sparse coefficients. 
This coefficient contamination is unfortunate yet important, as 
it has been shown that images of a single person under 
multiple poses exhibit greater variation than images of 
different people at a single pose [16]. 

Tzimiropoulos et al. [17] demonstrated computational and 
accuracy improvements by doing the ℓ1 optimization in a 
dimensionally reduced space.  Zafeiriou and Petrou [18] used 
Principal Component Analysis (PCA) and SR techniques 
based on [15] for facial expression recognition. The work in 
[18] struggled with coefficient contamination, noting that 
applying Wright’s framework is not a straightforward process.  
Ptucha et al. [19] addressed the coefficient contamination 
problem by preprocessing the data with supervised manifold 
learning.  Similarly to subspace clustering [20], supervision in 
manifold learning encourages clustering of sample images in 
accordance with their classification labels. 

By preprocessing SR classification with manifold learning, 
we are able to achieve superior classification results as well as 
faster runtimes.  Research in manifold learning has influenced 



the SR community and vice-versa.  Sparsity Preserving 
Projections [21] replaces the adjacency matrix used in LGE 
techniques with SR sparse coefficients.  Discriminative Sparse 
Coding [22] uses sparse coefficients in an LDA framework.  
Graph Regularized Sparse Coding [23] adds the LGE 
objective function on sparse coefficients to the traditional ℓ1 
sparse objective function as it jointly learns the sparse 
coefficients and dictionary terms. 

In this paper, we employ the SR concept in a 
dimensionality reduced space, obtained by a semi-supervised 
variant of Linear extension of Graph Embedding with K-SVD 
dictionary learning, and iterate over this space to minimize 
reconstruction errors.  To the best of our knowledge, this is the 
first paper which jointly optimizes dimensionality reduction 
matrix U, with ℓ1 dictionary Φ, and ℓ1 sparse coefficients a.  
We contrast our technique, which we call K-LGE, to other 
recently introduced techniques across a wide variety of facial 
and activity classification problems. 

The rest of this paper is organized as follows.  Sections 2 
and 3 introduce the necessary principles of manifold learning 
and SR concepts.  Section 4 describes how to jointly optimize 
manifold learning and SRs.   Section 5 presents experimental 
results.  Section 6 summarizes with conclusions. 

II. MANIFOLD LEARNING 

A. Dimensionality Reduction 
Complex objects often necessitate representations of high 

dimensionality. The features used in facial understanding 
problems vary from processed image pixels to SIFT descriptor 
points, Gabor jets, and concatenated block histograms.  This 
high dimensional feature space is not only inefficient and 
computationally intensive, but the sheer number of dimensions 
often masks the discriminative signal embedded in the data. 

For samples xi∈RD we seek a lower dimensional 
representation yielding yi∈Rd, where d<<D.  For linear models, 
e.g. PCA or LDA, yi = xi

TU, where U is a D×d projection 
matrix. Alternatively, the high dimensional feature space can 
be parameterized by a lower dimensional embedded manifold 
discovered using manifold learning [1, 2].  In addition to being 
more compact, the resulting lower dimensional manifold 
representation is more discriminative and thus more 
appropriate for subsequent classification. 

B. Linear extension of Graph Embedding (LGE) 
During manifold learning a fully connected graph of the 

input space is constructed, where each of the n input samples or 
nodes is connected to all other (n-1) input samples with a 
weight, 0 ≤ wij ≤ 1, i,j = 1…n. The resulting connection matrix 
W is called the adjacency matrix and the connections or 
weights wij can be solved several ways.  For example, wij is set 
to 1 if xi is amongst the z nearest neighbors of xj, 0 otherwise.  
Alternatively, wij is set to 1 if ||xi - xj|| < ε, and 0 otherwise.  
Allowing wij to take on continuous values between 0 and 1 
offers more control in describing sample connections.   

The goal of graph embedding is to preserve the similarities 
amongst neighbors in both high and low dimensional space.  
The optimal Y is found by minimizing: 

,

                                          1  

As such, if neighbors yi and yj have a strong connection wij, 
their Euclidean distance should be minimal.  W is defined 
similarly for X and Y, such that if neighbors xi and xj are close, 
yi and yj are also close.  LGE seeks a linear approximation to 
this nonlinear concept of the form yi=xT

iU or Y=XTU.  We 
define D as a diagonal matrix of the column sums of W, Dii = 
Σjwij; and L is the Laplacian matrix, L=D-W.  After 
simplification, this problem reduces to:  

                 min                                  2  

The optimal U is given by the minimum eigenvalue of the 
generalized eigenvector problem: 

X L XT U = λ X D XT U        (3) 

where U is the resulting projection matrix.  

Different choices of W yield a multitude of dimensionality 
reduction techniques such as LDA, Locality Preserving 
Projections (LPP) [24], and Neighborhood Preserving 
Embedding (NPE) [25].  For each approach, W is initialized to 
all zeros, and then connected wij entries are set as follows.   

For LDA, nodes i and j are connected if they are from the 
same class.   Connected wij entries are set to 1/kn, where kn is 
the number of samples per their shared class: 

1⁄                                               4    

For LPP, if nodes i and j are connected, then: 

                                       5  

For NPE, if nodes i and j are connected, we solve the 
following objective function for element i in local 
reconstruction matrix M ∈ Rnxn as a function of z nearest 
neighbors of xi, Nz(xi):  

 ,    1               6  

Then let: 

W = Μ + ΜΤ − ΜΤΜ        (7) 

Both LPP and NPE can be used in supervised mode by 
defining connected neighbors as those which share similar class 
labels. 

III. SPARSE SIGNALREPRESENTATION 

A. Sparse Representations 
A natural way to represent a low dimensional sample y∈Rd 

from a training dictionary Φ∈Rdxn is by solving ŷ=Φa, where 
a∈Rn is the weight of each training exemplar in the dictionary 
Φ.  However, in most practical cases, the system has either no 
solution or multiple solutions.  For sparse signals, the objective 
of SRs is to identify the smallest number of nonzero 
coefficients a∈Rn such that ŷ = Φa. 



A convex relaxation approach was introduced by Donoho et 
al. [8] and Candes et al. [9], where it was shown that under 
certain constraints, such as the sparsity of the representation, 
the minimal solution is equivalent to the solution of the 
following Lasso regression problem in statistics: 

â = arg min ||a||1   s.t. ŷ = Φa               (8) 

where ||a||1 = Σ |a|. The benefit of using the ℓ1 minimization is 
that the problem can be efficiently solved using convex 
optimization algorithms.  When noise is present in the signal, a 
perfect reconstruction is typically not feasible.  Therefore, we 
require that the reconstruction be within an error tolerance. 
This optimization, called Basis Pursuit Denoising (BPDN), 
reformulates (8) as: 

                 min    . . Φ              9  

Often (9) is approximated by loosening the error constraints 
and reconfigured to specifically include a regularization term, λ 
which encourages sparseness by incurring a penalty on the 
resulting coefficients: 

                 min Φ                          10  

Perhaps the most widely used method to solve the ℓ1 
minimization of (9) or (10) is Orthogonal Matching Pursuit 
(OMP) [26].  OMP iteratively selects one dictionary element at 
a time in a greedy fashion, minimizing a residual reconstruction 
error at each step.  Given the SR coefficients â of a test image 
using the dictionary Φ, a reconstruction error method estimates 
the class k* of a query sample y. Given k classes, the 
reconstructed sample using sparse coefficients a from all 
classes is compared to the reconstructed sample using 
coefficients ai from each respective class:  

                 min
:

Φ                                 11  

When constructing Φ the goal is to generate an over-
complete dictionary with more samples than dimensions per 
sample.  This allows the necessary degrees of freedom to 
choose the sparsest solution and produces smooth and graceful 
coefficient activity across diverse test samples [27].  For 
efficiency, it is desirable to have a dictionary of small size, 
necessitating linearly independent or decorrelated samples.     

K-SVD [28] was introduced as a means to learn an over-
complete but small dictionary.  K-SVD is an iterative 
technique, where at each iteration, training samples are first 
sparsely coded using the current dictionary estimate, and then 
dictionary elements are updated one at a time while keeping 
others fixed.  Each new dictionary element is a linear 
combination of training samples.  Rubinstein [29] implemented 
an efficient implementation of K-SVD using Batch Orthogonal 
Matching Pursuit.      

The works of [30, 31] jointly optimize dictionary learning 
and classifier training to select exemplars that minimize both 
reconstructive and discriminative errors.  Jiang et al. [12] 
devised efficient methods for choosing Φ from a set of training 
exemplars by minimizing both reconstruction and classification 
errors in an optimal fashion.  The work in [12] encourages 
input samples from the same class to have similar sparse codes. 

B. Dimensionality Reduction and Sparse Representations 
Although methods for populating the adjacency matrix W 

vary, sparseness is one common characteristic across all 
techniques.  Sparsity Preserving Projections (SPP) [21] 
replaces the neighbor coefficients in row i of matrix M from (6) 
with sparse coefficients â corresponding to sample xi.  Global 
Sparse Representation Projections [32] modifies the 
dimensionality reduction function in SPP to simultaneously 
maximize supervised class separability and minimize sparse 
representation error.   [22] uses the sparse coefficients to 
populate matrix W, then adds supervised similarity and 
dissimilarity matrices akin to LDA.   [23] replaces the y terms 
in (1) with coefficients â, claiming that nearby samples should 
have similar coefficients. 

Each of the above methods introduces a new dimensionality 
reduction technique or a new SR technique.  What lacks is a 
single, unified method that optimizes dimensionality reduction 
projection matrix U with dictionary Φ, and coefficients â.  In 
the next section we present such a method, which we call K-
LGE for K-SVD with Linear extension of Graph Embedding. 

IV. THE K-LGE METHOD 
We wish to combine the dimensionality reduction matrix U 

from (2) with a method to learn a dictionary Φ and sparse 
coefficients a.  K-SVD solves: 

               Φ,  min Φ    . .          12  

Combining (2) with (12), we get: 

,Φ,  min Φ                 13     
                                 . .       

The first term performs K-SVD optimization in low 
dimensional space, and the second term is the LGE 
dimensionality reduction objective function.  Since we are 
solving a classification problem, we need to convert test sample 
coefficients a into a classification label estimate.  Because 
dictionary elements from K-SVD are a linear combination of 
input samples, we cannot use the minimum reconstruction error 
in (11).  Instead, we shall perform classification with 
coefficient transformation matrix C, C∈Rmxk, where k is the 
number of classes and m is the number of dictionary elements.  

 We define H as a sparse ground truth matrix, H∈Rkxn.  
Each column of H corresponds to a training sample, where the 
kth element is set to 1 if yi belongs to class k, 0 otherwise.  
Coefficients a from each training example are stored into 
matrix A, A∈Rmxn.  This problem is formulated as: 

               min                                14  

Which can be solved directly via ridge regression: 

                                                    15  

A. Training Procedure for K-LGE 
Equation (13) is neither directly solvable nor convex.  

Using K-SVD with n training samples, we learn a dictionary Φ 
of m atoms, where m ≤ n via an implicit transformation T,  
T∈Rmxn, resulting in Φ=TY=TXTU. As such, the dictionary 



transformation function T and the dimensionality reduction 
transformation function U will oscillate if we indiscriminately 
iterate one after the other.    

For smooth and reliable results, we desire an overcomplete 
dictionary in which the number of samples, m is greater than 
the number of dimensions d.  T has rank ≤ m, U has rank ≤ d.  
Since m ≥ d, T in general has more degrees of freedom and it is 
preferable to iterate on T more often than U.  As we minimize 
reconstruction errors in (13), coefficients a offer a more 
accurate representation of X and lower classification errors. 

In [19] it was sown that supervised dimensionality 
reduction minimizes SR coefficient contamination by enforcing 
class separation. A discriminative dictionary was utilized in 
[12, 21, 22, 32], but we find similar results at much faster 
runtimes by doing class discrimination and dimensionality 
reduction prior to dictionary learning.  The initial value of U is 
solved via supervised LGE.  Subsequent updates of U need to 
be done in context of the current dictionary Φ and training 
sample coefficients A.  This update problem is formulated as: 

               min ΦT                           16  

Which can be solved directly: 

               Φ                                     17  

Fig. 1 summarizes the training procedure. 

 
Figure 1.  Training procedure for K-LGE. 

The choice of LGE in Step 1a of the training procedure 
should be a discriminative embedding which maintains input 
topology. The best approach we have found uses a convex 
combination of supervised and unsupervised adjacency 
matrices WLDA and WGaussian corresponding to (4) and (5) 
respectively.  The two are combined into a single W:  

               1                      18  

For posed datasets which are linearly separated, WLDA 
should be weighted higher.  For natural datasets or 
classification problems in which the number of classes is small, 
we emphasize the addition of WGaussian.  Classification problems 

with small number of classes reduce the rank of WLDA to (k-1).  
For example, to determine gender from facial images, WLDA 
would restrict U to a D×1 projection matrix, where D is the 
number of image pixels in each face exemplar.   

B. Testing Procedure for K-LGE 
With training complete, given a test sample x, along with U, 

Φ, and C, Fig. 2 summarizes the testing procedure:   

 
Figure 2.  Testing procedure for K-LGE. 

V. EXPERIMENTS 
We evaluate our K-LGE approach on four public 

databases: the extended Cohn-Kanade (CK+) facial expression 
dataset [33], the extended Yale B facial recognition database 
[34], the Facial Expression Recognition and Analysis 
Challenge  (FERA2011) GEMEP-FERA [35] dataset, and the 
i3DPost multi-view activity recognition dataset [36].   We test 
each dataset across three categories of 1) dimensionality 
reduction; 2) sparse representation; and 3) combined 
techniques.  The dimensionality reduction techniques include 
PCA, LDA, LPP [24], NPE [25], and Sparsity Preserving 
Projections (SPP) [21].  The sparse representation methods 
include K-SVD [28], LC-KSVD1 and LC-KSVD2 [12].  The 
combined methods include Sparse Representation-based 
Classification (SRC) [15],  Manifold based Sparse 
Representation (MSR) [19], and our proposed K-LGE method. 

A. Testing Datasets 
The CK+ [33] expression dataset contains 118 subjects in 

327 sequences exhibiting the expressions of anger, disgust, 
fear, happiness, sadness, surprise, and contempt. An Active 
Appearance Model (AAM) automatically localizes 68 points 
on the face.  To contrast a low dimensional representation of 
the face vs. a higher dimensional representation, the AAM eye 
and mouth corner points are used to define an affine warp to a 
canonical face of 60x51 pixels.  As such, from this dataset we 
compare two variants: D=68x2=136 (AAM point based), and 
D=60x51=3060 (pixel based).  Each has 164 training and 163 
testing faces (chosen randomly), and the K-SVD methods use 
a dictionary size of 63 elements. 

The Extended YaleB facial recognition dataset contains 
2,414 frontal images of 38 people under varying illumination 
and facial expression.  Each face is 192x168 pixels which are 
reduced to D=504 via random projections following [15].  The 
test set contains 1216 training faces and 1198 testing faces.  
The K-SVD methods use a dictionary size of 570 elements. 

The GEMEP-FERA temporal expression dataset contains 
155 training and 134 testing videos.  Each video sequence 

max
:

           19  

    1. Calculate low dimensional sample y= xTU.

     2. Calculate sparse coefficients a using (10). 

     3. Use C along with a to estimate class label vector 
l∈Rkx1 where the maximum value of l is used as a 
class predictor, and other l values provide confidence 
values as to which class x belongs. 

WHILE ε has not converged or ε > τ 

     IF   firstIteration  
 1a. Calculate U using LGE. 
     ELSE 
 1b. Calculate U using (17). 
     ENDIF 

     2. Calculate low dimensional samples Y= XTU. 

     3. Initialize the m samples of Φ randomly from the n 
low dimensional training samples. 

     4. Calculate {A, Φ} using K-SVD, substituting Y for X. 

     5. Calculate C using (15). 

     6. Calculate verification set error, ε = ||H – CTA||22. 

ENDWHILE 



varies from 20-150 frames of 10 actors exhibiting the five 
emotions of anger, fear, joy, relief, and sadness.  
Automatically localized eye and mouth corner points define a 
affine warp to a canonical face of 60x51 pixels per each frame.  
A sequence of 16 frames at the 1/3rd and 2/3rd mark of each 
video is fed into Motion History Image (MHI) [37] analysis 
yielding a 24x20 dense optical flow per sequence.  The X and 
Y coordinates at each 24x20 grid point for each of the two 
sequences formed the D=1920 input dimensions per sample.  
The K-SVD methods use a dictionary size of 75 elements. 

The i3DPost multi-view [36] activity recognition dataset 
contains 768 videos of 8 people performing 12 actions from 8 
views.  The 12 activities were walk, run, jump, bend, hand-
wave, jump in place, sit-stand, run-fall, walk-sit, run-jump-
walk, handshake, and pull.  Each video is MHI processed, 
giving 125 MHI sequences, each sequence containing 1500 
motion vector points.  PCA yielded 767 dimensions per video.  
The dataset contains 512 training videos and 256 testing 
videos.  The K-SVD methods use a dictionary size of 450 
elements. 

B. Testing Methodologies 
The dimensionality reduction techniques capture 99.9% of 

the data variance, and all use multi-class linear SVM as a 
classifier.  LDA uses equation (4), LPP uses (5), and NPE uses 
(6) and (7).  SPP is similar to NPE, but modifies equation (6) 
to use sparse coefficients.   

The sparse representation techniques all use K-SVD to 
define an optimal training dictionary of size m, where m<n.  
Coefficient transformation matrix C is generated from the 
training set as per (15).  Test samples use the m element 
dictionary to generate sparse coefficients using (10).   These 
sparse coefficients are converted to a class estimate using (19).  
LC-KSVD1 modifies the K-SVD objective function to favor 
clustering of coefficients by class and LC-KSVD2 further 
modifies the K-SVD objective function to include the solution 
of coefficient transformation matrix C. 

The SRC method uses random projection matrices for 
dimensionality reduction.  The low dimensional projection of 
training samples forms the training dictionary.  The 
corresponding sparse coefficients of test samples use (11) to 
make a final classification estimate.  The MSR method is 
identical to SRC, except the random projection dimensionality 
reduction is replaced with LPP.  

C. Experimental Results 
Table I demonstrates the performance of the 5 

dimensionality reduction methods, the 3 sparsity based 
methods, and the two combined methods against K-LGE on 
the 7-class CK+ dataset using the 68 AAM points.   Because 
the data is only 136 dimensions, no dimensionality reduction 
is used for K-SVD, LC-KSVD1, LC-KSVD2, or SRC.  This is 
a posed dataset, and as such LDA performs the best of the 
dimensionality reduction techniques.   

Table II uses the same CK+ dataset from Table 1, but uses 
60x51 images as input.  This higher dimensional space is not 
as discriminative as the 68 AAM points, but all methods do 
well because of the large separation of facial expression in 
each class.   

Table III uses the 38-class YaleB facial recognition 
dataset.  The 504 random projection input for all methods was 
further reduced in dimensionality as indicated by the d 
column, where d is the dimension where classification is 
performed.  The SR methods are advantaged over the 
dimensionality reduction methods, while the combined 
methods of MSR and K-LGE perform the best.   

TABLE I.  7-CLASS CK+ EXPRESSION DATASET, 68 AAM POINTS.  164 
TRAINING AND 163 TESTING SAMPLES. 

Method d m % Accuracy 
PCA 62 - 82.2 
LDA 6 - 89.6 
LPP 62 - 83.4 
NPE 24 - 80.4 
SPP 48 - 87.7 

K-SVD 136 63 79.1 
LC-KSVD1 136 63 79.1 
LC-KSVD2 136 63 75.5 

SRC 136 164 43.6 
MSR  62 164 75.5 

K-LGE (this paper) 62 63 92.0 
 

TABLE II.  7-CLASS CK+ EXPRESSION DATASET, 60X51 IMAGES. 164 
TRAINING AND 163 TESTING SAMPLES.  

Method d m % Accuracy 
PCA 162 - 82.8 
LDA 6 - 86.5 
LPP 163 - 84.7 
NPE 71 - 84.0 
SPP 80 - 77.9 

K-SVD 3060 63 84.0 
LC-KSVD1 3060 63 85.9 
LC-KSVD2 3060 63 84.7 

SRC 500 164 71.8 
MSR  163  164 79.1 

K-LGE (this paper) 163 63 86.5 
 

TABLE III.  38-CLASS YALEB RECOGNITION DATASET. 192X168 PIXEL 
IMAGES REDUCED TO 504 DIMENSIONS VIA RANDOM PROJECTIONS.  1216 
TRAINING IMAEGS, 1198 TESTING IMAGES.  

Method d m % Accuracy 
PCA 477 - 89.1 
LDA 37  - 90.3 
LPP  477 - 89.3 
NPE 271 - 91.2 
SPP 288 - 88.7 

K-SVD 504 570 93.2 
LC-KSVD1 504 570 93.7 
LC-KSVD2 504 570 93.4 

SRC 504 1216 86.1 
MSR  477  1216 96.5 

K-LGE (this paper) 477 570 95.3 

 

Table IV uses the 5-class GEMEP-FERA emotion dataset.  
Two MHI optical flow sequences per video were used as 
input.  The dimensionality reduction methods are advantaged 



over the SR methods, and the combined methods perform 
better than the dimensionality reduction methods. 

TABLE IV.  5-CLASS GEMEP-FERA EMOTION DATASET. MHI MOTION 
VECTORS.  155 TRAINING VIDEOS, 134  TESTING VIDEOS.  

Method d m % Accuracy 
PCA 154 - 55.2 
LDA 4 - 55.2 
LPP 154 - 55.2 
NPE 66 - 56.7 
SPP 75 - 52.2 

K-SVD 1920 75 51.5 
LC-KSVD1 1920 75 53.7 
LC-KSVD2 1920 75 51.5 

SRC 500 155 57.5 
MSR 154   155 56.0 

K-LGE (this paper) 154  75 60.5 
 

Table V uses the 12-class i3DPost multi-view activity 
recognition dataset.  The 767 PCA projection input for all 
methods was further reduced in dimensionality as indicated by 
the d column.  While there is no clear winner on this dataset, 
the LPP and K-LGE methods, both based on semi-supervised 
LPP dimensionality reduction, perform the best.   

TABLE V.  12-CLASS I3DPOST MULTI-VIEW ACTIVITY RECOGNITION 
DATASET.   512 TRAINING VIDEOS, 256  TESTING VIDEOS.  

Method d m % Accuracy 
PCA 510 - 94.9 
LDA 510 - 94.5 
LPP 510 - 96.1 
NPE 224 - 94.9 
SPP 241 - 91.0 

K-SVD 767 450 94.1 
LC-KSVD1 767 450 95.3 
LC-KSVD2 767 450 93.8 

SRC 767 512 88.7 
MSR 510  512 95.3 

K-LGE (this paper) 510  450 96.1 
 

Fig. 3 (left) shows the effect of the α blend parameter used 
in (18).  Our K-LGE is robust to 0.1≤α≤0.9.  Fig. 3 (center) 
shows the percent improvement from one iteration of K-LGE 

to stopping condition for each of the five datasets.  One 
iteration of K-LGE is often preferred to most other methods.  
The number of K-LGE iterations, shown above each point, is 
often small as the K-LGE method converges quickly.  Fig 3 
(right) shows the effect of the dictionary size m on the i3Dpost 
multi-view dataset.  While the performance of other 
techniques decreases noticeably with smaller dictionary sizes, 
K-LGE remains robust to dictionaries as small as m=50.   

Close inspection of the data in Tables I–V show that no 
single technique works best in all conditions.  However, the K-
LGE method consistently ranked first or near the top.  We 
attribute this to the discriminative strengths of dimensionality 
reduction, the classification power of SR methods, along with 
the K-LGE graceful unification of the two methods.  

When SR methods have insufficient training exemplars in 
Φ, their performance lags behind SVM classification methods.  
When datasets are posed, LDA dimensionality reduction is 
preferred; when datasets are natural, supervised LPP or NPE 
methods are preferred. K-LGE offers discriminative properties 
of LDA while maintaining the local topology of complex data 
representations in low dimensional manifold spaces. 

VI. CONCLUSIONS 
This paper presents K-LGE, a new method that optimizes 

both manifold-based dimensionality reduction and sparse 
representations within a single framework.  We believe this is 
the first attempt to co-optimize dimensionality reduction 
matrix U with dictionary Φ, and training coefficients a.  We 
leverage LGE dimensionality reduction techniques and K-
SVD dictionary learning techniques to formulate K-LGE.  By 
utilizing semi-supervised LGE dimensionality reduction 
before SR classification, we not only achieve faster compute 
times, but are able to minimize coefficient contamination. 
Successive optimizations of U, Φ, and a, minimize 
reconstruction errors, which results in lower classification 
accuracy.  Our results show that our proposed K-LGE 
framework provides significant advantages over other 
techniques across a wide variety of facial and activity 
classification problems. 
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Figure 3.  (left) Accuracy of K-LGE as a function of adjacency matrix W parameter α in (18).  (center) Accuracy improvement by K-LGE iterations.  Number on 
top of each point is the number of iterations to convergence.  (right) Performance of the four K-SVD methods as a function of dictionary size on i3DPost dataset. 
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