
Activity Recognition by Learning Structural and Pairwise Mid-level
Features Using Random Forest

Jie Hu
Department of Computer
Science and Engineering

University at Buffalo, SUNY
Buffalo, NY 14260 USA

jhu6@buffalo.edu

Yu Kong
Department of Electrical and

Computer Engineering
Northeastern University

Boston, MA 02115 USA
yu.kong@neu.edu

Yun Fu
Department of Electrical and

Computer Engineering
Northeastern University

Boston, MA 02115 USA
yunfu@ece.neu.edu

Abstract— This paper presents a novel random forest based
method to build mid-level features describing spatial and tem-
poral structure information for activity recognition. Our model
consists of two separate parts, spatial part and temporal part,
which are employed to capture the distinctive characteristics in
spatial and temporal domains of activity analysis. In the spatial
part, densely sampled low level features are passed through
the first level random forest and concatenated structurally to
form spatial mid-level features. In the temporal part, we use
results from the first level random forest on sparsely sampled
interest points to build pairwise mid-level features. The second
level random forests operate on all the mid-level features and
compute scores for these two parts. Then final recognition is
based on the weighted sum of these two parts. Our method
smoothly fuses both spatial and temporal information and
builds more descriptive models, which can better represent
human activities in large variations. Experimental results show
that our method achieves promising performance on three
available action and facial expression datasets.

I. INTRODUCTION

Vision based activity recognition has been widely applied
in human-computer interaction, visual surveillance, digital
entertainment and some other fields. A reliable recognition
of activities mainly depends on features extracted from image
sequences, as well as the statistical model applied.

As we can see, activities can be regarded as a spatial-
temporal combination of motions presented by different parts
of the subject. For example, we can find wide open eyes and
mouth in a “fear” face; People move their legs and arms al-
ternatively when walking. Previous methods mainly consider
local features or use bag-of-words approaches to cluster local
features into a set of words [17][4][15]. Although promising
results have been achieved, these methods do not consider
spatial and temporal structural information. Recent work
[12][18][5] improves recognition accuracy using mid-level
features which model the spatial and temporal relationships
of local features. However, modeling all kinds of relation-
ships in a homogenous way may reduce performance, since
it loses the inhomogeneity of different relationships and is
sensitive to types and positions of local features.

To address the aforementioned problems, we propose
to describe spatial and temporal relationships in different
manners. Local features in spatial neighborhood make up
the specific appearance of the action for each temporal
interval. We construct spatial mid-level features based on
densely sampled features, which give effective description
of action and can be easily combined according to their

relative positions. From the temporal perspective, for each
spatial position, though local features of the same category
may vary a lot depending on the subject and speed along the
time axis, their pairwise correspondence may comply with
some regularity. We construct temporal mid-level features
to encode pairwise relationships based on sparsely sampled
features, which are informative and robust to noise.

In this paper, we propose a discriminative action recog-
nition model that separately constructs spatial and temporal
structures, and combine results from these two parts to make
the final recognition. The overview of our method is shown
as Fig. 1. Our method consists of two parts, the spatial
part (the upper part in Fig. 1) and the temporal part (the
bottom part in Fig. 1). We first use the first-level random
forest to obtain the histogram features of densely sampled
cuboids and space-time interest points. Structural mid-level
features for temporal intervals are based on the histogram
features of densely sampled cuboids. All intervals obtain
their scores using second level random forests and combine
them to obtain the spatial part’s score. Histogram features
of two space-time interest points with specific temporal
relationships are multiplied to form the temporal pairwise
mid-level features. Pairwise relations contribute to the scores
for spatial sub-volumes containing them by passing their
mid-level features through the second level random forest,
furthermore contributing to the temporal part’s score. Then
scores of both spatial and temporal parts are combined to
obtain the final score to make recognition.

One challenge in the description of structural information
is how to choose the forms of features. Instead of using
combination of low-level features directly, which are of high
dimensionality and diversity, our two-level random forest
framework makes full use of the characteristic of random
forest that can provide an effective measure for local feature
related to category information. When fused structurally or
pair-wisely to compose mid-level features, these features
give a concise but precise depiction of information for some
spatial or temporal relationships.

II. RELATED WORK

Recent work shows excellent performance when fusing
local features in multiple ways for activity recognition.
Niebles et al. [12] present a constellation of bags-of-features
to hierarchically combine spatial-temporal features. Wang et
al. [18] regard actions as a set of hidden parts, building their
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Fig. 1. Overview of our method. Spatial-temporal volumes cropped from videos go through two parallel parts to get the category label. Top: Spatial part.
Low level features for densely sampled cuboids go through the first level random forests for histogram representation h and assemble to form the spatial
structural mid-level feature s. Spatial part score Sspatial is got from the combination results of all temporal sub-volume passing through the second level
random forest. Bottom: Temporal part. Histogram representations p for space-time interest points are multiplied mutually to make up mid-level feature
for temporal pairwise relations. Scores for spatial sub-volumes are got from results that temporal mid-level features go through the second level random
forest and further more make up the temporal part score Stemporal . Sspatial and Stemporal are combined to get the final score S to make the final recognition.

inter-relationships using hidden conditional random field.
There are also some models presented to describe structure
information in pairwise ways. Ryoo et al. [14] introduces a
set of spatial and temporal pairwise relationships, represented
as high dimensional histograms. Kovashka et al. [7] presents
a method that constructs a hierarchy of vocabularies using
pairwise neighbor information. In our model, densely sam-
pled cuboids are structured spatially and sparse space time
interest points are fused in a pairwise way for recognition.

Random forest, first proposed in classification problems
[3], has explored its use in computer vision. With the
property that all leaf nodes give the distribution of sample
points falling some specific interval in feature space, random
forest behaves as a mapping function in some applications.
Yao et al. [19][20] use the posterior probability that each
sample patch of object belongs to different categories as part
of the transformation from feature space to Hough space to
obtain the vote for label. In the work of [22][21], posterior
probability for each space time interest point obtained from
random forest are used to calculate the mutual information
between the query video and sub-volume in a dataset.

Two most related work to this paper are [5] and [11].
In [5], an AdaBoost based framework is used to compose
mid-level features for action patch and a second AdaBoost
is used to evaluate all mid-level features to give the final
action label. Only two-class recognition can be done un-
der this framework. Similar to the work [11], distributions
of samples obtained from leafs of the first level random
forest are regarded as vectors to compose the structural
or pairwise mid-level features. However, the work in [11]
only computes mid-level features for temporally sub-volumes
while we separately learns mid-level features for both spatial
and temporal structures. We use random forest make an
efficient integration of both spatial and temporal, structural

and pairwise information for multi-class recognition.

III. METHOD

Our goal is to recognize human activities, such as actions
or facial expressions from videos. The input of our model is
the content of human or face centric cropped bounding boxes
detected from image sequences. We regard these bounding
boxes as 3D spatial-temporal volumes in the whole process.
The model we use consists of two parts, each of which
considers spatial structural (section III. C) and temporal
pairwise relations (section III. D), respectively. Each of them
can be represented in 3 layers: 1) Low-level representation
(section III. A). 2) Mid-level representation (section III. C
and section III. D). 3)Final classifier (section III. E). Two
levels of random forests are used to make the connection
between layers. The construction of random forest to transfer
low-level representation into mid-level features is introduced
in section III. B. The second level random forest that works
on mid-level features is quite similar with the first level one.

A. Low-level Feature

We extract HOG/HOF [9] feature from videos. The combi-
nation of HOG (histograms of oriented gradients) and HOF
(histograms of optical flow) integrates both static appear-
ance information and local motion information, and shows
promising performance in action recognition [17].

Both dense and sparse sampling are used in this work. For
dense sampling, the whole 3D spatial-temporal volume is cut
into a set of cuboids with size of w×w× l. Each cuboid
is composed of nx × ny × nt cells HOG/HOF. To extract
optical flows, we use the algorithm in [16]. Orientations are
quantized into 9 bins for both HOG and HOF. For sparse
sampling, space-time interest point [8] detector is applied.
For each interest point p, similar as dense sampled features,



HOG and HOF are calculated in its nx×ny×nt cell space-
time neighborhood. Histograms of 4-bin for HOG and 5-bin
for HOF are computed for each cell.

B. Random forest construction
In both spatial and temporal parts, a 3D space-time volume

V is represented by a set of local features D, denoted as
V = {Di}. We assume that each local feature in a video
shares the same category label, c∈C , with the 3D space-time
volume containing it. Each local feature D is represented
as D = { f ,c,d}, where f = { f HOG, f HOF} is the extracted
HOG/HOF feature, c is its label and d = {x,y, t} is its relative
displacement from the 3D space-time volume center.

In the first-level random forest, training samples are
densely sampled cuboids (spatial part) or space-time interest
points (temporal part). HOG, HOF or displacement is chosen
in test functions with probability δHOG,δHOF ,δd , s.t. δHOG+
δHOF +δd = 1, which decide their weights in the recognition.
Assume f is the chosen feature, f τ is the value of feature
f ’s τ-th dimension and θ ∈R is a threshold. Suppose C is a
training sample, we randomly pick up one of the following
four types of test functions investigated in [6]:

t(1)(C, f ,τ,θ) = [ f τ > θ ]

t(2)(C, f ,τ1,τ2,θ) = [ f τ1 − f τ2 > θ ]

t(3)(C, f ,τ1,τ2,θ) = [ f τ1 + f τ2 > θ ]

t(4)(C, f ,τ1,τ2,θ) = [| f τ1 − f τ2 |> θ ]

(1)

A sample goes to the left branch when the test function
equals 1; otherwise, it goes to the right branch.

We create a pool of test functions {tk} for each non-
leaf node, where function type, dimension τ1 and τ2 (or τ

for test function of type 1), and threshold θ are randomly
generated. The test function t from the pool that maximizes
the information gain is assigned as the test function for this
node. Let S be the original training sample set at non-leaf
node pa, and St ′

l ,S
t ′
r be two sub-sets of S by splitting method

t ′. Then the splitting function t should satisfy [10]:

t = argmax
t ′∈tk
{E(S)−E(S; t ′)}= argmin

t ′∈tk
E(S; t ′)

= argmin
t ′∈tk
{
|St ′

l |
|S| ∑

cl
pcl ln(pcl )+

|St ′
r |
|S| ∑

cr
pcr ln(pcr)}

(2)

where E(�) is a function for computing entropy. pcl , pcr are
the proportions of cuboids for different categories in the left
and right child node.

All training samples start from the root, split recursively
to construct trees until one of the following three conditions
occurs: 1) All samples in the node are with the same label. 2)
The number of samples are small. 3) The depth of the node
reaches the predefined maximal value. Each leaf node stores
the proportions of samples belonging to different categories,
which can be written as a vector [p1, p2, ..., pNc ], assuming
there are Nc categories in total. During testing, we pass a
test sample through the forest and average the probability
vectors it receives from all trees and obtain a normalized
histograms h = [p̄1, p̄2, ..., p̄Nc ], which have less dimensions
than low level features but well describe the confidence of
each sample belonging to different categories.

To realize randomization, we train each tree on a random
subset of the training data using bagging method. Suppose
the whole training set is T with size s and the training set
for the ith tree is Ti with size si. If s is large enough and
s = si, by sampling examples uniformly with replacement,
about 2/3 training samples for tree i are expected unique
[2]. We use out-of-bag estimation to obtain the normalized
histograms for each training sample as [11].

Intuitively, features vary a lot for different spatial lo-
cations. To make the recognition more accurate, we train
separate first level random forests for samples in different
spatial locations. Each 3D space-time volume is cut into
Nh × Nw sub-volumes spatially and local feature samples
falling in the same spatial sub-volume are trained and tested
using the same random forest. We use the center of the
sample to decide whether one cuboid is inside or outside
of a spatial sub-volume.

C. Spatial Structural Mid-Level Feature
For the spatial part, densely sampled features at certain

temporal position are combined structurally to construct mid-
level features. After the first level random forest, we get
a set of normalized histograms {hi} for densely sampled
cuboids which only model the local information, where i is
the index for cuboids. To describe the spatial relationship,
we need to consider structural information as well. Since
densely sampled cuboids are at regular positions and scales in
space and time, we simply concatenate histograms for all the
cuboids with the same temporal coordinate in a video as one
long vector s = [h1,h2, · · · ,hn], regarded as spatial structural
a mid-level feature. The dimensions that hi anchored in the
vector s describe the spatial location for cuboid i. Then
we can obtain a set of such structural mid-level features
which depict overall spatial information along the time axis.
Structural mid-level features are the input to the second level
random forest in spatial part to make a further recognition.

D. Temporal Pairwise Mid-Level Feature
For temporal part, since activities may have large temporal

variation for different subjects and speed, simply concatena-
tion of sample points’ information along time axis cannot
give a proper description of the temporal relationship. Instead
of modeling all sample points in one time sequence, we
consider two sample points with certain temporal relationship
to construct a temporal pairwise mid-level feature.

We use sparse space-time interest points to build tempo-
ral pairwise relationships, which are invariant to the scale
change in both spatial and temporal domains. All space-
time interest points get their normalized histograms from
the spatial location depended first level random forests. We
define three types of temporal pairwise relationships in the
following for any two space-time interest points i and j
located in the same spatial sub-volume. The spatial sub-
volumes are the same as those obtained in section III. C.

R1 equal : |ti− t j|< γ0
R2 near : γ0 < |ti− t j|< γ1
R3 f ar : |ti− t j|> γ1

(3)

where ti and t j are the temporal coordinate of i and j, γ0 and
γ1 are two thresholds.



Since hi and h j give the distributions of space-time interest
points i and j, assuming i and j are independent given their
low-level features and locations, hT

i · h j represents the joint
distribution of interest points i and j.

qi j = hT
i ·h j =

 pi,1 p j,1 · · · pi,1 p j,Nc
...

. . .
...

pi,Nc p j,1 · · · pi,Nc p j,Nc

 (4)

pi,ci p j,c j gives the confidence that i belongs to ci and
j belongs to c j simultaneously. qi j, which is a temporal
pairwise pairwise mid-level feature, is the input of the second
level random forest for the temporal part.

E. Final Classification
For final classification, all structural mid-level features

(obtained from section III. C) and pairwise mid-level features
(obtained from section III. D) are passed through the second
level random forests. Final recognition is made based on the
weighted sum of scores from both spatial and temporal parts.

For the spatial part, the second level random forest is built
on all the training spatial structural mid-level features. The
construction of the random forest is similar to section III. B
except that there is no feature selection step.

When test, each temporal sub-volume obtains a vector
containing the distribution belonging to different categories
from the second level random forest. Suppose there are M
sub-volumes in the test video and Pk = [Pk,1, · · · ,Pk,Nc ] is the
distribution for sub-volume k. We average all M distributions
to give the spatial part scores for different categories.

S1 =
1
M ∑

k
Pk =

1
M
[∑

k
Pk,1, · · · ,∑

k
Pk,Nc ] = [S1,1, · · · ,S1,Nc ]

(5)
For the temporal part, we build the second level random

forest for each type of pairwise relationship in spatial sub-
volumes on pairwise mid-level features q from section III.
D. During test, suppose there are Nh temporal pairwise
relationships falling in spatial sub-volume h, with the ith
relationship having Ph

i = [Ph
i,1, · · · ,Ph

i,Nc
] as its distribution

from the corresponding random forest. The hth sub-volume’s
scores for different categories are the average of all the Ph

i :

Sh
2 =

1
Nh

∑
i

Ph
i =

1
Nh

[∑
k

Ph
i,1, · · · ,∑

k
Ph

i,Nc ] = [Sh
2,1, · · · ,Sh

2,Nc
]

(6)
Since different spatial sub-volumes have different signifi-

cance to the final recognition, we assign different weights to
the their scores to obtain the temporal part score:

S2 = ∑
h

whSh
2 = [S2,1, · · · ,S2,Nc ] (7)

In our experiment, we set wh according to the proportion of
pairwise relationships falling in spatial sub-volume h.

The final decision is based on the combination of the
results from both spatial and temporal parts. The category
label that has the highest score will be assigned to the video:

c = argmax
c′

(αS1,c′ +(1−α)S2,c′) (8)

where α < 1 is a parameter to balance the significance of
these two parts.

IV. EXPERIMENTS

We evaluate our methods on three public datasets: Weiz-
mann action [1], UCF sports [13] and facial expression
dataset [4]. In this section, we first describe the datasets and
experimental setting, then give experimental results.

A. Datasets

The Weizmann action dataset contains 9 human actions
presented by 10 different people: bend, jumping-jack (jack),
jump-forward-on-two-legs (jump), jumping-in-place-on-two-
legs (pjump), run, gallop-sideways (side), skip, walk, wave-
one-hands (wave1), wave-two-hands (wave2). We use leave-
one-subject-out cross validation to evaluate its performance
and report the average recognition accuracy.

The facial expression dataset is composed of 4 sub-sets for
6 different emotions by 2 different individuals and 2 lighting
setups. The 6 types of expressions are: anger, disgust, fear,
joy, sadness and surprise. We use the same experiment
framework as [4]. We train our model on one sub-set,
containing expressions from one person under one lighting
setup and test on all four subsets. The best achievement is
reported for all four settings.

UCF sports dataset contains 150 video sequences of
10 human actions: diving, golf swinging, kicking, lifting,
horseback riding, running, skateboarding, swinging on the
pommel horse and on the floor, swinging at the high bar and
walking. All these actions are various in scenes and view
points. We add horizontally flipped version of each sequence
to the dataset to extend the amount of samples. We use the
evaluation methods in [11] that randomly select 85% of the
samples for training and 15% for testing, split the dataset for
seven times and report the average results.

B. Experimental settings

For Weizmann dataset, we crop and align the figure centric
volumes using the background subtraction masks with the
dataset. 15×15×10 cuboids are densely sampled from 3D
spatial temporal volumes. We set nx = ny = 3,nt = 2 for each
cuboid. Space time interest points are detected using the
original setting. Every 3D spatial-temporal volume is cut into
5× 2 sub-volumes spatially, containing one dense sampled
cuboid in the center of each spacial sub-volume at every
sampled temporal coordinate. Such spatial sub-volumes are
also used to train separate random forest on space time
interest points in temporal part.

For facial expression dataset, we simply extract 90× 90
pixels containing the face from all frames and concatenate
them to form the 3D space-time volume. We use the same
settings as that on Weizmann dataset except the 3D space
time volume is cut into 5×5 spatial sub-volumes for densely
sampled cuboids training and 2×2 spatial sub-volumes for
space time interest points.

For UCF sports dataset, we use the coordinates of figures
in all frames together with the dataset to crop the figure
volume, then align them into a fixed size of 400×250. Each
space-time volume is cut into 5×3 spatial sub-volumes and
each cuboid is set to 80×80×10. We randomly select 85%
samples for training and use the rest for testing.
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Fig. 2. Left: Misclassified examples of walking category. Right: Confusion
matrix of our method on UCF sports dataset.

Experiments on all datasets have parameters to tune. In
our experiments, we use 100 trees and set the depth of each
tree to 20. We run 10 times for each experiment to reduce the
influence of the randomness. The weights for different scores
are tuned according to the proportion of training samples
falling in spatial or temporal sub-volumes. We empirically
set α is to 0.5 for the Weizmann and UCF sports datasets
and 0.3 for the facial expression dataset.

C. Results
Human Action Datasets. Our method achieves 100%

recognition accuracy on the Weizmann dataset. We do not
show the confusion matrix in this paper since it is simply a
perfect diagonal matrix. The confusion matrix of our method
on the UCF sports dataset is displayed as the right part of
Fig. 2. Our method achieves 91.47% accuracy on this dataset.
As we observed in the experiment, the “walking” category
is easily misclassified. The underlying reason is that they
look quite similar to actions in other categories such as run,
skateboarding, etc. We show misclassified examples as the
left part of Fig. 2.

TABLE I
COMPARISON RESULTS OF ACCURACY ON WEIZMANN AND UCF

SPORTS DATASETS.

Method Weizmann UCF
Kovashka et al. [7] - 87.27%

Yao et.al. [19] 95.60% 86.60%
Wang et. al. [17] - 85.60%

Rodriguez et. al. [13] - 69.20%
Fathi et. al. [5] 100% -
Liu et al. [11] 100% 90.10%
Our method 100% 91.47%

We compare our method with previous methods and show
results in Table I on both the Weizmann dataset and UCF
sports dataset. Our method achieves 100% accuracy on the
Weizmann dataset which is the same with the state-of-the-art
methods in [11], [5]. On the UCF sports dataset, our method
achieves 91.47% recognition accuracy which is higher than
[11]. Compared with [11], our method separately learns
spatial and temporal mid-level features, and integrates both
low-level appearance and mid-level structural information
for recognition. Therefore, our method outperforms other
comparison methods.
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Fig. 3. Left: Sample frames of “anger” and “fear” categories. Right:
Confusion matrix for training and test on different subjects and the same
illumination on facial expression dataset.

Facial Expression Dataset. We test our method on facial
expression dataset. Fig. 3 shows some representative frames
of categories “anger” and “fear” under one lighting setup and
the confusion matrix obtained from the experimental setting
that training and testing are completed on different subject
and the same illumination.
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Fig. 4. Comparison results of our method, method in [23] (Pyramid) and
method in [4] (Cuboid) on facial expression dataset. We list comparison
results in all four experimental settings, where training on one sub-set, test
on a sub-set with 1) same subject same illumination (same sub same illum),
2) same subject different illumination (same sub diff illum), 3) different
subject same illumination (diff sub same illum), 4)different subject different
illumination (diff sub diff illum).

We compare our method with [4] and [23] on facial
expression dataset and show comparison results in Fig. 4.
The method in [4], simply extracts spatiotemporal interest
points and applies bag-of-words model to represent activities.
Results show that our method outperforms [4] due to we
learn expressive mid-level features to elegantly describe
space-time structure. Zhao et al. [23] use a pyramid rep-
resentation to capture the distribution of point sets in each
sub-volume of video. Histograms from all sub-volumes are
concatenated to form the feature for the whole video in a
homogeneous way in both spatial and temporal perspective.
Our method outperforms [23] in the experimental settings
that using different subjects for training and testing where
modeling spatial and temporal structure information respec-
tively makes our model more robust to variation in local
features. For the experimental settings that using the same
subject for training and testing, the recognition accuracy of
our method is a little lower than [23]. We should note that
the method in [23] have different experimental settings from
ours , which would significantly affect recognition accuracy.
For example, whether some preprocessing (e.g., tracking,
background subtraction) is needed, etc. We achieve overall



recognition accuracy of 85.15% on facial expression dataset.
Evaluation of different components. To evaluate the

effectiveness of the spatial part and temporal part, we
compare the recognition accuracy of each part with the
complete method. The comparison experiment is conducted
on the Weizmann dataset. Comparison results in Fig. 5 show
that the complete method outperforms method using one
part. We also observe that spatial information and temporal
information contribute differently to action classes.
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Fig. 5. Comparison results using spatial, temporal part and both.

We also evaluate the performance of mid-level features in
recognition. We remove the mid-level features from the full
model and obtain the 2-layer mode , which recognizes human
actions only by dense low-level features. Another model for
comparison experiment is the one with only sparse mid-
level features. Comparison results on the Weizmann dataset
between the two models and the full model are shown in
Fig. 6. It is clear that the full model which uses both low-
level feature and mid-level feature outperforms the model
only uses low-level features. The mid-level feature learns
spatial and temporal structures of action videos and better
represents structural information in the videos. Therefore, the
recognition accuracy of the full model can be boosted using
both appearance information and structural information.
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Fig. 6. Comparison results using only low-level and mid-level features.

V. CONCLUSION
In this paper, we presented a random forest based method

for human behavior recognition. Structural and pairwise mid-
level features were constructed from densely or sparsely

sampled low level HOG/HOF features to represent spatial
and temporal sub-volumes of action video. Recognition
results of spatial and temporal parts are calculated separately
and combined to make the final recognition. We tested our
method on Weizmann, UCF and facial expression datasets
and showed promising performance of our method.
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