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Figure 1: A smooth sketch is first converted into either G1 piecewise circular arcs or G2 piecewise clothoids, using Baran et

al.’s fitting method with a fixed geometric error [BLP10]. The two primitives are then converted into a super-circle [BAC∗06]

and into our new super-clothoid model, respectively. While the initial shape looks fair for both models, during deformation the

super-circle exhibits displeasing discontinuities (dashed circled) whereas the super-clothoid always keeps a smooth shape.

Abstract

Piecewise clothoids are 2D curves with continuous, piecewise linear curvature. Due to their smoothness prop-

erties, they have been extensively used in road design and robot path planning, as well as for the compact rep-

resentation of hand-drawn curves. In this paper we present the Super-Clothoid model, a new mechanical model

that for the first time allows for the computing of the dynamics of an elastic, inextensible piecewise clothoid. We

first show that the kinematics of this model can be computed analytically depending on the Fresnel integrals, and

precisely evaluated when required. Secondly, the discrete dynamics, naturally emerging from the Lagrange equa-

tions of motion, can be robustly and efficiently computed by performing and storing formal computations as far

as possible, recoursing to numerical evaluation only when assembling the linear system to be solved at each time

step. As a result, simulations turn out to be both interactive and stable, even for large displacements of the rod.

Finally, we demonstrate the versatility of our model by handling various boundary conditions for the rod as well

as complex external constraints such as frictional contact, and show that our model is perfectly adapted to inverse

statics. Compared to lower-order models, the super-clothoid appears as a more natural and aesthetic primitive

for bridging the gap between 2D geometric design and physics-based deformation.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Deformable 1D structures are ubiquitous in our real environ-
ment as well as in imaginary, human-created worlds. Such
long and thin objects can depict ropes, hair, grass, trees, and
even the shape of animals or humans. In 2D, smooth curve-
like shapes naturally emerge from the drawing of lines and

serve as core primitives for many artistic techniques such as
arabesques or calligraphy. Computing their deformation in a
realistic way represents an important challenge, for both in-
teractive design applications and 2D animation. In this paper
we focus on the physics-based simulation of a widely used
class of 2D geometric curves: piecewise clothoids.
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1.1. Related Work

Geometric curve design In geometric design, much work
has been devoted for more than half a century to the search
for curve primitives adapted to the interactive and control-
lable design of objects. Spline primitives have been acknowl-
edged as the ideal primitives for applications requiring some
good and fast controllability under positional or tangen-
tial constraints. Fairness, characterizing the aesthetic of a
curve or a surface, has also become an important criterion
for quality in engineering design [Sap94]. Among all the
different metrics that have been proposed to measure fair-
ness, one popular criterion is to consider that a fair curve
should possess a slowly varying curvature [MS92, HT10].
Clothoids, characterized by a linear curvature, are precisely
curves that minimize the curvature variation, subject to end-
point constraints [Lev08]. They are thus renown for their
visually pleasing appearance, and for this reason have re-
cently found various applications such as shape completion
in computer vision [KFP03] or the compact and automatic
representation of artistic sketched lines in computer graph-
ics [MS08, BLP10].

Physics-based animation of curves On the other hand, the
animation of slender structures has become a very active
field of research in computer graphics in recent years, and
various mechanical models have been proposed for model-
ing the dynamics of 3D inextensible rods with elastic bend-
ing and twisting. While many authors have relied on an
explicit 3D parameterization of the centerline [LMGC04,
ST07, ST08, TGAB08, BWR∗08, SLF08, BAV∗10], others
have preferred to design compact rod models parameterized
by a minimal set of physical parameters that fully describe
the kinematics of the rod, without the need for adding any
extra constraints [BAC∗06, Had06, Ber09]. As a result, the
latter class of approaches can capture perfect inextensibil-
ity of the rod (and thus, “nervous” motions) while avoiding
the recourse to some large stretching energy [ST07, ST08],
which may ruin the stability of the model, or to projection
schemes [BWR∗08, BAV∗10], which may cause some artifi-
cial energy loss.

In the vein of reduced-coordinates models, the super-helix
model [BAC∗06] has been proposed as a high-order primi-
tive (helical elements in 3D, circular elements in 2D) able to
accurately capture the motion of complex geometric curves
- as curly as desired - with only a few elements. Moreover,
as the model is parameterized by the curvature, the internal
elastic forces - linear in curvature - can be computed using
a fully implicit scheme, in contrast to other approaches. As
a result, the model is guaranteed to remain very stable even
under large displacements or when using a large time step.
The degree of representation of this model is nevertheless
limited to the first order, which is not sufficient for gener-
ating curves that are appealing to the eye, i.e., that satisfy
the fairness property. Note that some previous approaches
do simulate the dynamics of at least G2-smooth curves such
as splines, see e.g. [LMGC04]. However, such models are

parameterized using the maximal-coordinates formulation,
which raises the stability and energy preservation issues
mentioned above when attempting to enforce the kinematics
of the rod. In this paper, we would like to go one step further
in the formulation of high-order reduced-coordinate models,
by proposing a G2-smooth (instead of G0 or G1-smooth) dy-
namic curve primitive made of elements with linear curva-
ture (clothoids) instead of constant curvature (segments or
circular arcs).

From curve design to physics-based animation Recently,
Derouet-Jourdan et al. [DJBDT10] showed that reduced-
coordinates models such as the super-helix model are partic-
ularly suitable for solving the inverse statics problem: there
always exists a simple and intuitive solution that identifies
the physical parameters of the rod model such that any in-
put curve corresponds to a stable configuration of the rod at
rest under gravity. Applications include 2D physically-based
animation in animated movies and video games, based on
a “what you draw is what is simulated” concept. However,
with this approach, input curves first need to be approxi-
mated by piecewise circular arcs in order to conform to the
geometry of the 2D super-helix model. In contrast, piecewise
clothoids nicely unify curve drawing and curve simulation
while guaranteeing the fairness property from the design to
the animation.

1.2. Contributions

• We introduce the super-clothoid model, a new dynamic
primitive for simulating the motion of an inextensible and
elastic piecewise clothoid. While being extremely com-
pact in term of richness of representation and guarantee-
ing G2-smoothness at any resolution, this model robustly
and efficiently captures the deformations of rods under
large displacements, with only a few elements.

• We handle various external forces, bilateral and unilat-
eral constraints with or without friction, and all possi-
ble boundary conditions for this model. Such a versatility
can be exploited to simulate a wide variety of physics-
based objects, ranging from simple cantilever beams to
free closed contours of deformable bodies colliding with
the ground.

• We exactly and efficiently solve the inverse statics prob-
lem, in a similar spirit as in [DJBDT10]. This allows us
to bridge the gap between, on the one hand, the geomet-
ric design of smooth curves, which often calls for the use
of piecewise clothoids, and, on the other hand, the realis-
tic deformation of the designed curves within a physics-
based environment.

These contributions are described in Sections 2 and 3,
Section 4, and Section 5, respectively. Section 6 validates
our model against previous approaches and presents our re-
sults, before concluding.

c© 2012 The Author(s)
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2. Kinematics of a Super-Clothoid

Let r(s) be the centerline of the rod parameterized by the
curvilinear abscissa s, L its length, θ(s) and κ(s) = dθ

ds its
angular and curvature functions respectively, as depicted in
Figure 2. For now, the rod is assumed to be clamped at the
end s = 0 with clamping position r0 = r(0) and clamping
angle θ0 = θ(0), and free at the other end s = L. In Sec-
tion 4.1, we’ll see how to relax this clamping constraint and,
conversely, how to constrain both ends, so as to extend the
range of modeled phenomena.

Figure 2: Notations for a super-clothoid.

Let N be the number of elements composing a super-
clothoid, and Ei the ith element of the rod, with length ℓi.
We use the term node for the junction point between two
consecutive elements Ei and Ei+1, located at the curvilinear
abscissa si (see Figure 2). By convention we have s0 = 0 and
sN = ∑N

i=1 ℓi = L. Assuming that the curvature κ(s) varies
lineary over each element amounts to choosing N +1 scalar
parameters κ̂i,i∈{0,...,N}, located at the nodes si, for describ-
ing the geometry of the rod. A super-clothoid made of N

elements is thus composed of N + 1 discrete curvatures κ̂i,
that are collected in vector κκκ .

2.1. A Single Clothoidal Element

Let us consider the element Ei, characterized by its two ex-
tremal curvatures κ̂i−1 (left node) and κ̂i (right node) and by
its length ℓi. On the element Ei, the curvilinear abscissa s

ranges between si−1 and si. For the sake of clarity, we de-
note by u the local curvilinear abscissa u = s− si−1 ranging
between 0 and ℓi on the element Ei. The local curvature and
angular functions κi(u) and θi(u) = θi(0)+

∫ u
0 κi thus read

κi(u) =
ℓi −u

ℓi
κ̂i−1 +

u

ℓi
κ̂i (1)

and θi(u) = θi(0)+(u−
u2

2ℓi
) κ̂i−1 +

u2

2ℓi
κ̂i.

Let Pi = ai u2 +bi u+ ci be a second-order polynomial with
ai =

κ̂i−κ̂i−1
2ℓi

, bi = κ̂i−1 and ci = θi(0). Then θi = Pi(u) and

κi(u) = bi +2ai u. The tangent and normal vectors ti and ni

respectively read

ti(u) =

(

cos(Pi(u))
sin(Pi(u))

)

ni(u) =

(

−sin(Pi(u))
cos(Pi(u))

)

.

By integration of the tangent vector, we can compute the
centerline vector as

ri(u) = ri(0)+

(

Ii(u)
Ji(u)

)

where the two integral functions Ii(u) =
∫ u

0 cos(Pi(u
′))du′

and Ji(u) =
∫ u

0 sin(Pi(u
′))du′ can be analytically computed

as functions of the Fresnel integrals
∫ u

0 cos(x2)dx and
∫ u

0 sin(x2)dx. In the following however, we shall directly use
Ii(u) and Ji(u) as base functions for analytically deriving the
kinematics of the super-clothoid. When required, these two
integrals will be evaluated numerically using Romberg inte-
gration [PTVF07].

2.2. A G2 Chain of N Clothoidal Elements

In this section we derive the kinematics of a full super-
clothoid composed of N clothoidal elements with G2-
smooth junctions at nodes. The first element E1 is clamped
at the left end s = 0 with the clamping angle θ0.

Curvature and angle We first aim at deriving the global

expressions for the curvature and angular functions κ(s) and
θ(s). Let us start by decomposing the curvature function
κ(s) over each element Ei, as

κ(s) = ∑
1≤i≤N

κi(s− si−1)χi(s) (2)

where χi(s) equals 1 for s ∈ [si−1,si] and 0 elsewhere.

Using expression (1) for the local function κi(u), we can
reformulate the global curvature function as

κ(s) = ∑
0≤i≤N

κ̂i Fi(s) (3)

where Fi(s) is the C0-smooth piecewise linear shape function

Fi(s) =











0 if s ≤ si−1 or s ≥ si+1
s−si−1

ℓi
if si−1 ≤ s ≤ si

ℓi+1−(s−si)
ℓi+1

if si ≤ s ≤ si+1.
(4)

For the completeness of Equation (4) we assume that s−1 =
s0 + ε , sN+1 = sN + ε and ℓ0 = ℓN+1 = ε with ε → 0. By
integration of Equation (3), we have

θ(s) = θ0 + ∑
0≤i≤N

κ̂i Gi(s) (5)

where Gi(s) =
∫ s

0 Fi(s
′)ds′ is the C1-smooth piecewise

quadratic function

Gi(s) =



















0 if s ≤ si−1
(s−si−1)

2

2ℓi
if si−1 ≤ s ≤ si

ℓi

2 +(s− si)−
(s−si)

2

2ℓi+1
if si ≤ s ≤ si+1

1
2 (ℓi + ℓi+1) if s ≥ si+1.

(6)

c© 2012 The Author(s)
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Super-clothoid Super-circle

Figure 3: Shape functions for the super-clothoid model (left)

compared to those of the super-circle model (right).

The curvature and angular shape functions Fi(s) and Gi(s)
are represented in Figure 3 (left), and compared against the
shape functions used in the super-circle model (right).

Position, velocity and acceleration For the sake of clarity,
let us introduce the following 2D functions

ΦΦΦ(s) =

∫ s

0
n(s′)ds′ (7)

ΦΦΦG
i (s) =

∫ s

0
n(s′)Gi(s

′)ds′ (8)

ΨΨΨ(s) =
∫ s

0
t(s′)ds′ (9)

ΨΨΨG
i (s) =

∫ s

0
t(s′)Gi(s

′)ds′ (10)

ΨΨΨGG
i j (s) =

∫ s

0
t(s′)Gi(s

′)G j(s
′)ds′. (11)

All these functions (nonlinearly) depend on θ0 and κκκ only.
Let us define ΦΦΦG(s) (resp. ΨΨΨG(s)) the matrix collecting
in a 2D row the N + 1 column vectors ΦΦΦG

i (s)i=0..N (resp.
ΨΨΨG

i (s)i=0..N ), and let ΨΨΨGG(s) be the third-order tensor with
coordinate ΨΨΨGG

i jk (s) where k indicates the component index

of the 2D vector ΨΨΨGG
i j (s). The global position r(s) then reads

r(s) = r0+ΨΨΨ(s), and by applying time differentiation we get
the global velocity and acceleration

ṙ(s) = ṙ0 +ΦΦΦ(s) θ̇0 +ΦΦΦG(s)κ̇κκ (12)

r̈(s) = r̈0 + θ̈0 ΦΦΦ(s)+ΦΦΦG(s)κ̈κκ (13)

− θ̇0
2

ΨΨΨ(s)−2 θ̇0 ΨΨΨG(s)κ̇κκ −
(

ΨΨΨGG(s)⊗κ̇κκ
)

κ̇κκ .

Note that r̈(s) linearly depends on r̈0, θ̈0 and κ̈κκ , and non-
linearly on the other terms θ̇0, θ0, κ̇κκ and κκκ . Matrix ΦΦΦG(s)
plays an important role as it represents the Jacobian matrix
(

∂r
∂ κ̂i

(s)
)

i∈{0,...,N}
which linearly relates κ̈κκ to r̈(s).

3. Dynamics of a Super-Clothoid

The dynamics of our new discrete rod model is given by the
Lagrangian equations of motion

d
dt

∂T

∂ ˙̂κi

−
∂T

∂ κ̂i
+

∂U

∂ κ̂i
= 0 ∀i ∈ {0, . . . ,N} (14)

where T and U are respectively the kinetic and potential
energies of our system, defined as [BAC∗06]

T =
ρS

2

∫ L

0
ṙ2(s)ds

and U = Eg +Eel ,

with Eg the weighting energy of the rod and Eel its internal
elastic energy. Let g be the constant of gravity, ρS the lineic
mass of the rod and EI its stiffness, assumed to remain con-
stant along the centerline. The natural curvature of the rod is
denoted κ0(s) and is supposed to vary linearly on each ele-
ment, similarly as κ(s). In the general continuous case, the
potential energies Eg and Eel read [BAQ∗05]

Eg = ρSg

∫ L

0
(L− s)sin(θ(s))ds

and Eel =
EI

2

∫ L

0

(

κ(s)−κ0(s)
)2

ds.

3.1. Discrete Equations of Motion

After analytically deriving the terms of Equation (14) in the
piecewise linear case, we get the following discrete dynamic
equations for a super-clothoid,

ρS

∫ L

0
r̈(s)⊤ΦΦΦG

i (s)ds+
∂Eg

∂ κ̂i
+

∂Eel

∂ κ̂i
= 0 ∀i ∈ {0, . . . ,N}

(15)

where
∂Eg

∂ κ̂i
= ρSg

∫ L

0
(L− s)cosθ(s)Gi(s)ds

and
∂Eel

∂ κ̂i
= EI

N

∑
j=0

(

κ̂ j − κ̂0
j

)

∫ L

0
Fj(s)Fi(s)ds.

The linear dependence in ¨̂κ j explicitly appears in the accel-
eration term r̈ of the left-side member of Equation (15). Fur-
thermore, ∂Eel

∂ κ̂i
linearly depends on the κ̂ j. This term can thus

be evaluated using an implicit time-stepping scheme. All
other terms are nonlinear expressions of κ̂ j and ˙̂κ j and will
be computed explicitly. Finally, by decomposing the left-
hand side term of Equation (15) using the expression (13)
for r̈(s), we obtain

M(κκκ)κ̈κκ +K

(

κκκ −κκκ0
)

= B(κκκ,κ̇κκ). (16)

M is the dense, symmetric positive-definite mass matrix

Mi, j = ρS

∫ L

0

(

ΦΦΦG
i (s)

)⊤
ΦΦΦG

j (s)ds,

K is the tridiagonal, symmetric positive-definite stiffness
matrix

Ki, j = EI

∫ L

0
Fi(s)Fj(s)ds

c© 2012 The Author(s)
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with Ki,i = EI

∫ L

0
F2

i (s)ds = EI

(

ℓi + ℓi+1

3

)

and Ki−1,i = EI

∫ L

0
Fi−1(s)Fi(s)ds = EI

ℓi

6
,

and B= {Bi}i∈{0,...,N} collects all other (nonlinear) terms,

Bi =
∂Eg

∂ κ̂i
−ρS

(

∫ L
0 r̈∗(s)⊤ΦΦΦG

i (s)ds
)

where r̈∗(s) = r̈(s,κ̈κκ = 000) is the free acceleration of the rod.

3.2. Internal Damping

We use the same heuristics as in the super-helix
model [BAC∗06] for modeling internal damping, and simply
add the supplementary implicit term µ Kκ̇κκ to the left-hand
side of Equation (16) where µ ≥ 0 is the internal damping
coefficient. Intuitively, increasing the damping coefficient
reduces the amounts of bending deformation of the rod. Note
that using a small (but non-zero) value preserves the rod’s
“nervosity” while filtering out high-frequency oscillations,
thus helping stabilize the simulation of the model.

3.3. External Forces

As in [BAC∗06], external forces can be modelled in an uni-
fied way using a lineic density of distribution p(s). The con-
tribution of this force density to the dynamic equations (16)
is computed by projecting p(s) onto the ΦΦΦi vectors, leading
to a generalized force vector F= {Fi}i of size N +1 with

Fi =
∫ L

0
ΦΦΦG

i (s)
⊤p(s)ds. (17)

To account for new external forces in the dynamic equa-
tions (16), one should only add the contribution Fi to the
right-hand side term Bi given in Equation (17). Note that in
our current dynamic equations, the derivative of the weight-
ing energy Eg already accounts for the gravitational force,
corresponding to a constant force density pg = ρ Sg. In the
following, we derive the expression for a few other impor-
tant external forces, such as air viscous friction and punctual
forces, and explain how to model frictional contact.

Air viscous friction We model air viscous friction by the
force density pν (s) = −ν ṙ(s), where ν represents the air
viscous coefficient. The corresponding generalized force
contribution reads

Fi =−ν
∫ L

0
ΦΦΦG

i (s)
⊤ ṙ(s)ds. (18)

Integration is performed numerically (see Section 3.5).

Punctual forces A punctual force applying to the loca-
tion s j is modeled using a Dirac force distribution p(s) =
Pδ (s − s j), with the Dirac function defined such that
∫

E δ (s− s j)ds = 1 if s j ∈ E, 0 else. The expression of the
generalized force contribution is thus simply given by

Fi =ΦΦΦG
i (s j)

⊤P, (19)

which only requires one evaluation of ΦΦΦG
i (s).

Frictional contact We follow the generic constraint-based
approach proposed by Bertails et al. [BDCDA11]. A gener-
alized contact force at location s j is modeled as an implicit
punctual force F = J⊤ r with r the unknown (local) contact
force (playing the role of a Lagrangian multiplier) and J the
Jacobian matrix ΦΦΦG(s j). Exact Coulomb friction is consid-
ered by adding a supplementary unknown, u, which stands
for the relative velocity between the two colliding objects,
and relates to r through the simple equation fff AC(u,r) = 0,
where fff AC is the (nonsmooth) Alart-Curnier function. The
dynamic problem with frictional contact can then be formu-
lated as a nonsmooth root-finding problem, and solved using
a standard Newton’s algorithm [BDCDA11].

3.4. Time Discretization

Implicit bending stress For the numerical solving of Equa-
tion (16) we used a semi-implicit Euler integration scheme.
Linear terms such as the elasticity term and internal damp-
ing are computed implicitly, whereas all other (nonlinear)
terms (gyroscopic terms and external forces - except contact
forces) are evaluated explicitly. We observed that the implicit
computation of the bending terms plays a major role in the
stability of the simulation: compared to nodal models, for
which the bending terms are nonlinear and have to be com-
puted semi-explicitly [ST07, BWR∗08], our model turns out
to remain much more stable, even for high deformations and
for a large time step (in practice, we have used a time step
close to 10 ms for all our simulations).

Adaptive time step To improve the stability of the simu-
lator in the case of large variations of the motion (during
the interactive manipulation of the model by a user, for in-
stance), we have implemented an adaptive time step that au-
tomatically refines when the numerical integration error –
evaluated as the norm of the difference between next gen-
eralized velocity and current generalized velocity of the rod
– exceeds a certain threshold. In practice, we have observed
that this adaptive scheme works well in most situations as it
both improves the accuracy of computations and greatly lim-
its possible simulator’s failures in the case of rough motions.

3.5. Implementation

We have implemented the super-clothoid model in C/C++,
and used the Numerical Recipes library [PTVF07] for nu-
merically evaluating integrals having no closed form, by way
of using Romberg integration. Note that any scientific com-
puting library allowing for numerical integration could be
used in replacement. For the sake of robustness and effi-
ciency, we carefully perform formal computations as far as
possible with the help of the Maple software [Map10]. For
instance, all kinematics terms are stored in a formal format
and are only evaluated when needed. We typically resort to
numerical approximation when assembling the linear system
to be solved at each time step.

c© 2012 The Author(s)
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4. New Boundary Conditions and Constraints

Boundary conditions

Bilateral constraint r0 clamped r0 clamped r0 relaxed

at the right end θ0 clamped θ0 relaxed θ0 relaxed

No constraint

External constraint

r�L� � r f

Looping constraint

r�L� � r0

Looping constraints






r�L� � r0

θ�L� � θ0

κ�L� � κ0

Looping constraints

r�L� � r0

θ�L� � θ0







Figure 4: Various configurations of the super-clothoid (N =
4) subject to new boundary conditions and/or constraints.

Until now we have assumed that the rod was clamped at
the left end, in terms of both its position (r0) and its orien-
tation (θ0). A one-side clamped rod indeed turns out to be
a suitable model for a large range of common thin objects
such as hair, grass, trees, etc., for which the position and di-
rection of clamping are meaningful. For other systems such
as a pendulum, a rope or a designed path, it may however be
useful to either fix or release both ending orientations and/or
positions. In this section we show that with a small set of
changes made to our super-clothoid model, we manage to
capture the complete set of all these different configurations,
and thus give the user the choice of modelling a wide range
of phenomena, represented in Figure 4.

4.1. Relaxing Clamping Constraints at the Left End

The principle consists in adding the left end position r0 =
{r0,x,r0,y} and/or the angle θ0 as new degrees of freedom of
the system. Let ξξξ = {ξ}i be the vector of size n′ > N + 1
collecting the unknowns of the system. Its N + 1 first coor-
dinates are composed of the κ̂i and its last coordinates com-
posed of either r0,x,r0,y (n′ = N + 3) or θ0 (n′ = N + 2), or
both (n′ =N+4). The new discrete equations of motion read

M̃(ξξξ )ξ̈ξξ + K̃

(

ξξξ −ξξξ 0
)

= B̃(ξξξ ,ξ̇ξξ ) (20)

where the matrices M̃, K̃ and vector B̃ of size n′ are com-
puted from the original ones with only a few modifications,
as explained in Appendix A. We denote ξξξ 0 the vector of size
n′ collecting the N +1 scalars κ̂0

i , and then filled up with 0.

Figure 4, top row, depicts the whole set of rods configura-
tions we are now able to model. In the case when the angle
θ0 is released, we add some internal dissipation τ θ̇0, τ ≥ 0
to its dynamics, similarly as in Section 3.2, in order to stabi-
lize the system and avoid brusque changes in orientation.
4.2. Adding Bilateral Constraints at the Right End

External constraints We define three different types of
configuration constraints of the form C(ζζζ ) = 0, applied onto
the location sc of the centerline (one may choose sc = L to
constrain the right end of the rod):

• a nonlinear position constraint of dimension 2, denoted
Cr(ζζζ ) = r(sc)− r f ;

• a linear, scalar angular constraint, Cθ (ζζζ ) = θ(sc)−θ f ;
• a linear, scalar curvature constraint, Cκ (ζζζ ) = κ(sc)−κ f ,

where r f , θ f and κ f are fixed (e.g., imposed by the user).

We add nc scalar bilateral constraints of any type above
(the position constraint splits into two scalar constraints that
are linearized) to the original system (20) by augmenting
the vector of unknowns ζζζ with a Lagrangian multiplier λλλ
of size nc, and formulate the bilateral constraints at the ve-
locity level. This leads to the following constrained system

{

M̃(ξξξ )ξ̈ξξ + K̃
(

ξξξ −ξξξ 0
)

= B̃(ξξξ ,ξ̇ξξ )+H
⊤λλλ

Hξ̇ξξ = D
(21)

where the matrix H of size (nc,n
′) collects the Jacobian ma-

trices of the constraints, and the vector D of size nc collects
the constant terms of the constraints. For each type of con-
straint mentioned above, these terms respectively read (as-
suming the left clamping end constraints are relaxed)

Hr =

(

∂r

∂ξi
(sc)

)

0≤i≤n′
=

[

ΦΦΦG
0 (sc), . . . ,ΦΦΦ

G
N(sc),ex,ey,ΦΦΦ(sc)

]

Hθ =

(

θ

∂ξi
(sc)

)

0≤i≤n′
= [G0(sc), . . . ,GN(sc),0,0,1]

Hκ =

(

κ

∂ξi
(sc)

)

0≤i≤n′
= [F0(sc), . . . ,FN(sc),0,0,0]

and Dr = ṙ f − ṙ(sc,ξ̇ξξ = 0) Dθ = θ̇ f Dκ = κ̇ f

c© 2012 The Author(s)
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where ṙ f , θ̇ f and κ̇ f are evaluated with a discrete Euler
scheme using previous and current time steps.

Self-constraints The three above constraints can of course
be similarly derived for handling self-constraints, e.g., for
attaching the right end of the rod to its left end (forming a
loop) or for glueing two different rods at a specific location.
Let A and B be two rods (possibly representing the same rod)
and sA

c ,s
B
c two locations where the constraint applies, on rods

A and B respectively (if A = B then we assume sA
c 6= sB

c ).
Compared to the external constraint, the gradient matrix is
simply replaced with

Hx =H
A
xA −H

B
xB

where H
A
xA (resp. HB

xB ) is the gradient of the quantity x (rep-
resenting r, θ or κ) relative to rod A (resp. rod B), evaluated
at sA

c (resp. sB
c ). The vector D reads

Dr = ṙB(sB
c ,

˙ξξξ B = 0)− ṙA(sA
c ,ξ̇ξξ

A
= 0) Dθ = 0 Dκ = 0.

Figure 4, second row, depicts simple rod systems with
various left end boundary conditions, subject to an exter-
nal position constraint at the right end. In the case when the
left clamped angle is relaxed, one gets a rod system with
symmetric ends. When the left clamped position is addition-
ally relaxed, one retrieves a pendulum system where the two
ends are inverted compared to the one depicted in the first
row, second column. The three last bottom rows of the fig-
ure illustrate the effect of applying self-constraints of various
types (position, position and angle, position, angle and cur-
vature) joining the right end to the left end of the rod. Note
that adding an angular (resp. curvature) constraint to lower-
order constraints enforces the G1 (resp. G2) smoothness of
the resulting looping curve.

5. Inverse Statics: from Curve Design to Animation

Resolving the inverse statics problem with our super-
clothoid model allows us to bridge the gap between the ge-
ometric design of smooth curves and their physically-based
deformation.

Figure 5: Flowers sketched as piecewise clothoids by the

user and converted into super-clothoids (N = 2). Without

performing stable inverse statics (left) the flowers fall un-

der gravity, whereas with stable inverse statics (right) their

original shape remains at stable equilibrium.

5.1. Sketching a Piecewise Clothoid

We use the accurate curve fitting algorithm by Baran et
al. [BLP10] that allows the user to choose between either
a piecewise clothoid approximation, or a piecewise circu-
lar arcs fit. This way, we are able to couple their fitting al-
gorithm either to the super-circle model, or to our super-
clothoid model, and perform thorough comparisons between
the two approaches (see Section 6).

5.2. Inverse Statics

Similarly as in [DJBDT10], our goal is to find the parame-
ters EI, ρS and κκκ0 such that the current configuration of the
rod is a stable rest position, i.e., its potential energy U is at a
local minimum. The nice thing is that all the results regard-
ing the computation of an equilibrium and its stabilization,
derived in the super-circle case [DJBDT10], are directly ap-
plicable to the super-clothoid case.

Finding an equilibrium under gravity The equilibrium
problem ∇∇∇U = 000 always admits a solution for κκκ0,

κκκ0 = κκκ f it − (K(EI))−1
B(ρS,θ

f it
0 ,κκκ f it ,ℓℓℓ f it ,κ̇κκ = 000), (22)

where the parameters EI and ρS can freely span the en-
tire positive real space. In Equation (22), we have explicitly
mentioned the dependence of the matrix K (resp. of the vec-
tor B) on the parameter EI (resp. ρS). The vector B is com-
puted for a static configuration (κ̇κκ = 000), using the fitting val-
ues θ

f it
0 ,κκκ f it ,ℓℓℓ f it output from the geometric fitting step. Fi-

nally, compared to [DJBDT10] where finding an equilibrium
amounts to solving N independent scalar equations (diago-
nal system), solving Equation (22) here requires the inver-
sion of a positive-definite tridiagonal system of size N + 1,
which can still be done very efficiently.

A sufficient condition for stability The Hessian of the po-
tential energy reads ∇2Ep = EIT+ρSS where T= 1

EIK is
a symmetric, positive-definite tridiagonal matrix and S a real
symmetric matrix, with

Si j =−g

∫ L

0
(L− s)sinθ(s)Gi(s)G j(s)ds.

Note that both T and S are independent of EI, ρS, and κκκ0.
With a similar reasoning as in [DJBDT10], we find a suffi-
cient condition such that ∇2Ep is positive-definite,

EI

ρS
>−

λN

γN
, (23)

where λN is the minimal eigenvalue of S and γN the minimal
(strictly positive) eigenvalue of T. Compared to [DJBDT10],
evaluating condition (23) requires some extra computations
for extracting the eigenvalues γi of the matrix T. However,
computing the eigenvalues of a real symmetric tridiagonal
matrix can be efficiently achieved, for instance using a QL
decomposition algorithm [PTVF07].

Finally, based on Equation (23), by either increasing EI

or decreasing ρS, the stability of the rest shape under gravity
can always be guaranteed, whatever the input curve is.
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6. Results

In this section we provide some validation of the super-
clothoid model against lower-order models, show some ap-
plication results, and discuss the limitations of our approach.
All our simulations are part of the accompanying video.

6.1. Validation

We have compared our super-clothoid model to two lower-
order models, the articulated chain of rigid bodies [Fea83,
Had06] and the super-circle model [BAC∗06], in terms of
geometric and motion accuracy, numerical robustness, and
computational efficiency.

Figure 6: Bringing dynamics to the tail of a photographed

cat figurine, using (left) a super-circle and (right) our super-

clothoid model. Compared to the super-circle model, the

super-clothoid requires less elements for fitting the initial

shape of the tail (9 instead of 11) and, more importantly,

offers more visually pleasing (smoother) animation results.

Geometric accuracy and smoothness Figure 6 shows the
geometric fitting and the subsequent animation of the 2D tail
of a cat figurine, by using either the super-circle primitive
or our new super-clothoid model. Beyond its superior rich-
ness of representation – only 9 clothoid arcs are sufficient to
accurately capture the shape of the tail, compared to 11 cir-
cular arcs, the piecewise clothoid primitive provides a more
aesthetic (G2-smooth) depiction of slender objects, and this
level of smoothness is preserved all along animation. For this
experiment the chain of articulated bodies was too unstable
(see below) for representing a worthy model for comparison.

Motion accuracy Figure 7 illustrates, on a rod swinging
motion under gravity, the gain in precision and smooth-
ness brought by the super-clothoid model compared to the
two other approaches. When using a very high resolution
(N = 50 elements), the three models converge towards the
same motion (close to the continuous case), which serves as
a reference basis for our comparisons.

With only 4 elements, we note that the super-clothoid
model produces a motion that is very close to the refer-
ence. In contrast, with the super-circle model, the circular
arcs remain quite visible up to N = 4 elements, and highly
curved parts, especially near the clamped end, are unsatis-
factorily approximated even for a large number of elements
(N ≤ 20). This is even more critical for the articulated rigid
body model, where at least 20 elements are necessary to re-
produce the motion with a sufficient resolution. For further

accuracy, these two models would require an adaptive, non-
uniform distribution of elements along its centerline with
short elements located at the highly deformed parts. We
found that such an adaptive algorithm is not necessary for
our super-clothoid model to be accurate all along the rod.

Figure 7: To get an equivalent visual result for a swinging

motion, 20 elements have been used for the chain of rigid

segments (left), 8 for the super-circle (middle), and only 4

for the super-clothoid (right).

Numerical robustness While the articulated chain of rigid
bodies suffers from stability issues when simulating the mo-
tion of undamped rods, we have noted that the numerical ro-
bustness is equivalent for the two other models. With a fixed
time step (dt = 11 ms), the super-circle model diverges for
large and fast motions, similarly as for the super-clothoid
model. We thus have also incorporated our adaptive time
step scheme to the super-circle model so as to perform fair
comparisons between the two. With the adaptive time step,
we could only observe that a high, similar level of stability
was achieved by both models.

Computational efficiency All our experiments were run on
a single threaded application running on a laptop equipped
with an Intel Core 2 Duo CPU at 2 GHz. The super-clothoid
model turns out to be fully interactive up to 15 elements,
which actually represents a wider range than the one we
have been using for our applications in practice. As ex-
pected however, due to the recourse to accurate numerical
integration, this model cannot, from a mere animation view-
point, compete with the two other, analytical models, and
especially with the extremely fast (up to 300x faster) super-
circle model, for which all integrals computations have been
worked out by hand and hard-coded. Nevertheless, in the
context of unifying curve design and animation, the super-
clothoid model offers the best deal, as explained in the dis-
cussion Section 6.3.

6.2. Examples of Applications

Bringing life to pictures If you look around you, you will
see how many objects are made of planar, long and thin
parts. These range from chair bars, curtain rods, decora-
tive objects, to pattern designs on paper walls, cloth, and
household linens. Thanks to our new dynamic primitive, it
becomes straightforward to animate such 2D objects, thus
bringing some dynamics to still images. Figure 6 provides
an example of this picture animation process.

c© 2012 The Author(s)
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Secondary motion in 2D animation Thanks to the wide
range of configurations offered by setting multiple bound-
ary conditions and bilateral constraints to our model (see
Section 4), we are able to animate various 2D dynamic ob-
jects. As an example, the video presents a ball composed of a
smooth closed super-clothoid that falls under gravity before
colliding with the ground. Due to Coulomb friction, this de-
forming “ball” may slide or roll on the ground.

Table 1: Important features for our example demos.

Example Left end Contact Inverse
(N elements/rod) relaxed ? & constraints ? statics ?
Cat tail (9) No No Yes
Statuette leg (2) No No Yes
Falling ball (4) Yes Yes No
Flowers (2) No No Yes

6.3. Limitations and Discussion

Unlike lower-order rod models (articulated rigid bodies and
super-helix), the super-clothoid model requires spatial nu-
merical integration for computing the discrete equations of
motion. This is due to the non-closed form of the geometry
of a clothoid, which relies on the Fresnel integrals. As men-
tioned above, accurate numerical approximation does not al-
ter the stability of the system, but it does affect its compu-
tational cost. This supplementary cost is the price to pay for
gaining one order of precision and smoothness in the geome-
try as well as in the mechanical behavior of the system. As il-
lustrated above, this gain of smoothness is relevant in all our
simulations. Moreover, a low number of elements (typically,
N ranging between 5 and 10) proves sufficient for capturing
complex deformations at a high resolution.

Rigid segment    Input curve
(optimally represented 

     as one element)

Circular arc Clothoidal arc

Figure 8: An initially straight curve is optimally repre-

sented with one element (left), whatever the geometric prim-

itive used. After conversion into the corresponding dynamic

model, gravity is applied (right). With a rigid segment, the

curve cannot deform and with a circular arc, motion looks

unnaturally constrained. In contrast, with a clothoidal arc,

the curve nicely bends and unfolds on the ground.

One could still argue that by using lower-order models,
it would be affordable to artificially refine input curves so
as to get a sufficient resolution for animation without de-
grading performance too much. For that purpose, the circular
arcs reconstruction method proposed in [DJBDT10] lets the
user choose the resolution of the reconstruction, depending
on what he/she desires as for the animation precision. Since
animation comes at the end of the pipeline, such a process

may require many tests and trials before the user finds a suit-
able resolution. Moreover, the authors mention algorithmic
issues when trying to excessively refine the curve with very
small arcs. In contrast, here we are concerned with a much
closer unification between geometric curve design and ani-
mation. We claim that the resolution of the piecewise arcs
primitive should only depend upon the geometric precision,
should be optimal, and should be automatically computed
from the sketched curve, as done in most approximation
methods [MS08, BLP10]. In this context the super-clothoid
model offers the best deal compared to low-order models.
Figure 8 shows that even an extremely low resolution will
yield fairly rich deformations. Moreover, as illustrated in
Figures 1 and 6, a low resolution will still ensure the fairness
property all along animation. In other words, the required
input geometric resolution is compatible with the needs of
animation. This is not the case for the two lower-order mod-
els for which there exists a huge gap between the required
geometric resolution and the required animation resolution.

7. Conclusion

We have introduced the super-clothoid model, a new com-
pact and robust physics-based primitive for simulating the
dynamics of a piecewise clothoid. With only a few clothoidal
elements, this model is able to interactively capture the elas-
tic deformations of a wide range of 2D systems such as
cantilever beams, pendulums, smooth closed curves, possi-
bly subject to contact and friction. Combined with inverse
statics, this approach bridges the gap between the geomet-
ric design of smooth curves and their subsequent anima-
tion, opening the way for new interactive and dynamic de-
sign interfaces. In the future, we would like to extend the
class of created objects to complex combinations of curves
and to the handling of 2D objects defined by an extensi-
ble contour. Designing a 3D super-clothoid model is also
part of our motivation, given the numerous applications in
3D animation as well as the recent interest towards 3D
piecewise clothoids in computer vision and geometric de-
sign [GXH01, BHHT10, HT10].

Acknowledgments

The author would like to thank Romain Casati and Alexan-
dre Derouet-Jourdan for sharing their code on articulated
rigid bodies and static fitting, respectively, and all the anony-
mous reviewers for their very helpful comments.

References

[BAC∗06] BERTAILS F., AUDOLY B., CANI M.-P., QUERLEUX

B., LEROY F., LÉVÊQUE J.-L.: Super-helices for predicting the
dynamics of natural hair. ACM Trans. Graph. 25 (2006), 1180–
1187. 1, 2, 4, 5, 8

[BAQ∗05] BERTAILS F., AUDOLY B., QUERLEUX B., LEROY

F., LÉVÊQUE J.-L., CANI M.-P.: Predicting natural hair shapes
by solving the statics of flexible rods. In Eurographics short pa-

pers (2005). 4

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

517



Florence Bertails-Descoubes / Super-Clothoids

[BAV∗10] BERGOU M., AUDOLY B., VOUGA E., WARDETZKY

M., GRINSPUN E.: Discrete viscous threads. ACM Trans. Graph.

(2010). 2

[BDCDA11] BERTAILS-DESCOUBES F., CADOUX F., DAVIET

G., ACARY V.: A nonsmooth Newton solver for capturing exact
Coulomb friction in fiber assemblies. ACM Trans. Graph. 30

(2011), 6:1–6:14. 5

[Ber09] BERTAILS F.: Linear time super-helices. Comp. Graph.

Forum 28, 2 (2009). 2

[BHHT10] BEN-HAIM D., HARARY G., TAL A.: Piecewise 3D
Euler spirals. In ACM Symp. Sol. and Phys. Modeling (2010),
SPM ’10, pp. 201–206. 9

[BLP10] BARAN I., LEHTINEN J., POPOVIĆ J.: Sketching
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Appendix A: Relaxed Clamping End

Once the clamping end constraint has been relaxed, the dynamics of
the system is described by the new equations of motion

M̃(ξξξ )ξ̈ξξ + K̃
(

ξξξ −ξξξ 0)= B̃(ξξξ ,ξ̇ξξ )

with the modified matrices M̃, K̃ and vector B̃ of size n′.

M̃ is the symmetric positive definite matrix of size n′ with

• the previous square block related to the degrees of freedom κ̂i,

M̃i, j =Mi j ∀i, j ∈ {0, . . . ,N},

• the supplementary elements if r0 is a degree of freedom,

M̃i,N+1 = ρS

(

e⊤x

∫ L

0
ΦΦΦG

i (s)

)

ds ∀i ∈ {0, . . . ,N}

M̃i,N+2 = ρS

(

e⊤y

∫ L

0
ΦΦΦG

i (s)ds

)

∀i ∈ {0, . . . ,N}

M̃N+1,N+1 = M̃N+2,N+2 = ρSL

M̃N+1,N+2 = 0,

• the supplementary elements if θ0 is a degree of freedom,

M̃i,n′−1 = ρS

∫ L

0
ΦΦΦ(s)⊤ΦΦΦG

i (s)ds ∀i ∈ {0, . . . ,N}

M̃n′−1,n′−1 = ρS

∫ L

0
ΦΦΦ(s)⊤ΦΦΦ(s)ds,

• the supplementary elements if both r0 and θ0 are free,

M̃N+1,N+3 = ρS

(

e⊤x

∫ L

0
ΦΦΦ(s)

)

M̃N+2,N+3 = ρS

(

e⊤y

∫ L

0
ΦΦΦ(s)

)

.

K̃ is the symmetric matrix of size n′ with

• the previous square block related to the degrees of freedom κ̂i,

K̃i, j =Ki j ∀i, j ∈ {0, . . . ,N},

• the supplementary elements,

K̃i, j = 0 ∀i, j ∈ {N +1, . . . ,n′ −1}.

B̃ is the vector of size n′ with

• the previous vector block, modified as

B̃i∈{0,...,N} = B(r̈0 = 0) if r0 is a degree of freedom

B̃i∈{0,...,N} = B(θ̈0 = 0) if θ0 is a degree of freedom

• the supplementary elements if r0 is a degree of freedom,

B̃N+1 = 0

B̃N+2 = −ρSgL,

• and the supplementary element if θ0 is a degree of freedom,

B̃n′−1 = −ρSg

(

e⊤y

∫ L

0
ΦΦΦ(s)

)

.
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