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Figure 1: A terrain field of over 300 gigasamples (left). Direct editing using a paint and displacement brush (right) and
simultaneous rendering of the resulting changes is performed at 60 fps on a 1920×1080 viewport using our approach.

Abstract

Previous terrain rendering approaches have addressed the aspect of data compression and fast decoding for
rendering, but applications where the terrain is repeatedly modified and needs to be buffered on disk have not
been considered so far. Such applications require both decoding and encoding to be faster than disk transfer. We
present a novel approach for editing gigasample terrain fields at interactive rates and high quality. To achieve
high decoding and encoding throughput, we employ a compression scheme for height and pixel maps based on
a sparse wavelet representation. On recent GPUs it can encode and decode up to 270 and 730 MPix/s of color
data, respectively, at compression rates and quality superior to JPEG, and it achieves more than twice these rates
for lossless height field compression. The construction and rendering of a height field triangulation is avoided by
using GPU ray-casting directly on the regular grid underlying the compression scheme. We show the efficiency of
our method for interactive editing and continuous level-of-detail rendering of terrain fields comprised of several
hundreds of gigasamples.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism— I.4.2 [Image Processing and Computer Vision]: Compression (Coding)—

1. Introduction

Today, high-resolution terrain fields consisting of many bil-
lions of color and height samples are available, and a num-
ber of techniques exist to render such fields efficiently. For
an overview of the different approaches underlying these
techniques let us refer to the survey by Pajarola and Gob-
betti [PG07]. To avoid bandwidth limitations due to disk

transfer and to reduce the number of rendered primitives,
height field compression such as adaptive triangulation or
differential vertex encoding has been incorporated into ter-
rain rendering approaches. The orthophoto used to texture
the height field is typically compressed using the fixed-rate
compression format S3TC. The requirement to decode the
compressed data at very high rates has played a major role
in the selection of compression schemes for terrain fields.
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Figure 2: Creating a street: A forest (left) is cleared along a path (middle) to build a street (right).

There is also an increasing interest in techniques that al-
low editing terrain fields interactively, including applications
ranging from game level design and virtual world model-
ing to geographic planning and geological simulation sys-
tems. Since the modified data needs to be buffered in disk
memory so that it can be displayed and modified again at a
later time, both decoding and encoding have to be faster than
disk transfer. Current compression schemes for terrain fields
are problematic in such applications because the construc-
tion of the compressed data representation requires extensive
pre-processing. Even though medium-quality S3TC com-
pressors come at the required throughput [vWC07], no such
encoder has been reported for height maps or high-quality
compression. Thus, existing terrain editing approaches have
focussed on alterations of uncompressed terrain, not taking
into account disk I/O bandwidth limitations. To the best of
our knowledge, interactive visually-guided editing of terrain
fields so large that they require compression has not been
achieved so far.

Our contribution: We present a novel approach to inter-
actively edit terrain fields which are so large that I/O band-
width becomes the major bottleneck (see Fig. 1 for an ex-
ample). To handle such fields efficiently, we propose a data
compression scheme that combines an existing GPU real-
ization of wavelet transforms [vdLJR11] with novel GPU
approaches to efficiently perform run-length and Huffman
encoding and decoding of quantized wavelet coefficients.
The scheme has been tailored to exploit the GPU’s capa-
bilities via the CUDA API, and, thus, it allows both decod-
ing and encoding of height and color samples to be faster
than disk transfer. Special emphasis has been put on high-
quality compression, and on efficiently combining level-of-
detail editing and rendering. To accomplish this, our internal
data representation is based on pixel and height field raster
data, and rendering is performed directly on these rasters us-
ing ray-casting. Our particular contributions are

• a high-throughput GPU coder which can encode and de-
code up to 270 and 730 MPix/s, respectively, at compres-
sion rates similar to JPEG2000,

• a push-pull error compensation scheme to avoid the prop-
agation of quantization errors between resolution levels,

• a progressive and view-dependent update scheme for edit-

ing operations to avoid latencies due to bandwidth limita-
tions, and

• a prototype system that demonstrates interactive editing
and rendering of large terrain fields comprised of more
than 300 gigasamples.

Our paper is structured as follows: In the next section we
review work that is related to ours. Sec. 3 gives an overview
of the different parts our method is comprised of and outlines
their interplay. Following is the discussion of the GPU com-
pression scheme, including details on the specific GPU par-
allelization of run-length and Huffman coding. Next, we an-
alyze the compression rates, the reconstruction quality, and
the coding performance our method can achieve on recent
GPUs, and we demonstrate the efficient interplay between
data compression and rendering in a prototype system. The
paper is concluded with some ideas on future enhancements
and additional applications.

2. Related Work

Terrain rendering approaches usually incorporate some form
of height field compression to reduce disk and CPU-GPU
bandwidth limitations as well as the number of rendered
polygons. Pajarola and Gobbetti [PG07] discuss the basic
principles underlying many of these techniques, and many
others [BGMP07,GMC∗06,BGP09,DSW09,LC10] provide
specific details on customized compression schemes.

On the other hand, only few approaches have been re-
ported for interactive terrain editing, where the internal data
representation is continually modified. He et al. [HCP02]
perform the editing operations on a regular height map and
create an adaptive triangulation on-the-fly. The efficient con-
struction of an error-controlled mesh hierarchy from a regu-
lar height map on the GPU has been demonstrated by Lam-
bers and Kolb [LK10]. Ammann et al. [AGD10] also edit
a regular height map, but avoid constructing a height field
triangulation and perform ray-casting directly on this map.
Brandstetter et al. [BIMW∗10] perform edits at coarser res-
olution levels and discard finer details in the edited regions.
None of these approaches, however, has considered the prop-
agation of changes between different resolution levels.
Atlan and Garland [AG06] edit the coefficients of a Haar
wavelet transform on the CPU. Thus, for some simple edit-
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Figure 3: Placing a mountain using a height stamp, painting snow on top, and using a color stamp to add the EG logo.

ing operations the propagation of changes is not required.
Bhattacharjee et al. [BPN08] apply the editing operations di-
rectly on the GPU, but then also perform the propagation of
changes on the CPU. In both cases, the finest resolution level
has to be available in CPU memory.
Bruneton and Neyret [BN08] propose a method for ef-
ficiently embedding vector features into the height field
by adapting a uniform height field triangulation. Terrain
orthophotos are generated procedurally by an appearance
shader and, thus, streaming of high-resolution color data to
the GPU is not required. Furthermore, updated appearance
and elevation maps at finer levels are always created on-
the-fly once they become visible. Thus, once these maps get
paged out of GPU memory, they have to be re-created when
the user comes back to the respective terrain region. This is
significantly different to our approach.

For the compression of the color-valued terrain or-
thophoto, the most common scheme in terrain rendering ap-
plications is S3TC. It is popular since it enables hardware-
supported random access on the GPU. For RGB data, S3TC
achieves a moderate compression ratio of 6:1 in the DXT1
format. By converting the initial color samples into the
YCoCg color space and using the DXT5 format, improved
reconstruction quality at half the compression rate can be
achieved [vWC07]. The possibility to efficiently encode
color fields into the S3TC format on the GPU has been
demonstrated [vWC07].

An important topic related to our method is data com-
pression using transform coding. In particular, Taubman
and Marcellin [TM01] discuss many aspects specific to im-
age compression, including wavelet-based compression and
the JPEG/JPEG2000 standards. The capability of wavelet
transforms to effectively compress scalar fields has been
employed for terrain height fields [PSM∗07, WZY08].
Our GPU coder builds in particular upon previous ap-
proaches for computing discrete wavelet transforms on the
GPU [WLHW07, TSP∗08, vdLJR11]. For a given Huffman
table, Balevic [Bal09] has shown the efficient GPU realiza-
tion of a Huffman encoder. For editing, we use concepts sim-
ilar to those proposed by Perlin and Velho [PV95] for multi-
resolution pixel image editing using wavelet transforms.

3. Gigasample Terrain Editing

Before discussing the GPU coder that is used to enable fast
encoding and decoding of gigasample terrain fields, we first

give an overview of the different components of our proto-
type editing system as well as their interplay. In particular,
we describe the used internal data structure and the embed-
ding of the compression scheme into the editing system.

The terrain editing system is intertwined with a visually
continuous terrain renderer based on a tiled quadtree terrain
representation, where 2× 2 adjacent tiles on each level are
exactly covered by one tile on the next-coarser level. Each
tile represents the data on a uniform grid of size 20482, with
the leaf nodes corresponding to the original data. Our ter-
rain representation is similar to the one proposed by Dick
et al. [DSW09]. In our case, however, instead of storing the
data at the according resolution, a tile at a particular quadtree
level stores the compressed differences between this data
and a low-pass filtered copy of it. To compute these differ-
ences, a discrete wavelet transform (DWT) is performed. At
runtime, tiles within a spherical pre-fetching region around
the camera are loaded from disk into CPU memory. The
world-space radius of the pre-fetching region is doubled with
every coarser level.

3.1. Tile Tree Creation and Reconstruction

After the terrain field has been partitioned into a set of tiles,
for each tile a node is created and the multi-resolution tile
tree is constructed in a bottom-up procedure (two different
trees for the height and the color data are stored): One level
of a DWT is computed on the data in each tile, which splits
the data into a lower-resolution approximation and so-called
detail coefficients. These coefficients encode the difference
between the approximation and the original data. Only the
detail information is stored at the nodes, and the lower-
resolution approximations of 2×2 adjacent tiles are merged
to form the data at a new parent node. This procedure is then
repeated recursively until the tree has a user-defined depth.
Finally, the detail coefficients at each node are encoded as
described in Sec. 4, and the compressed data stream is stored
to disk.

To reconstruct the data at a particular node, the tile tree is
traversed along the path from the root to this node. At each
node except the root, an inverse DWT using the detail coef-
ficients at this node and the coarser approximation stored at
the parent node is performed. The resulting data is the coarse
approximation that is then used to reconstruct the data at the
next child node. This process is repeated along the path until
the selected node is reached.
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3.2. Rendering

In each frame, the set of tiles required to render the current
view is determined by traversing the tile tree in depth-first
order. The traversal is stopped when the tile that is repre-
sented by the current node is completely outside of the view
frustum, or if the maximum screen-space error when render-
ing the data of this tile falls below a user-defined threshold.
A visited node is marked if the tile it represents is visible.

The tree is then traversed again as before, and the data at
the marked nodes is reconstructed as described before. It is
first checked, however, whether the data is already resident
in GPU memory or was reconstructed at an earlier time and
cached on the CPU. In the latter case the data is streamed
from the CPU to the GPU. Otherwise, the compressed data
that is required to perform the reconstruction is streamed
from disk to the GPU. On the GPU, decoding as well as
the inverse DWT are performed and the reconstructed data
is stored in a 2D buffer. Once the data for a tile has been re-
constructed on the GPU, it is always tried to keep this data
on the GPU or at least the CPU for as long as possible.

The reconstructed 2D raster data is then rendered using a
GPU ray-caster [DKW09], which performs a discrete traver-
sal of the raster until a hit with the height field is deter-
mined. At this position, the tile’s orthophoto is evaluated us-
ing anisotropic interpolation and the resulting color is used
as the pixel color.

3.3. Editing

Editing is performed on the currently rendered tiles. Since all
rendered data is stored in 2D buffers, the editing operations
can be realized in a very efficient way. After each editing
operation, the tile tree has to be updated to enforce the ap-
plied changes at all resolution levels. Here, we distinguish
between the propagation of the applied changes upwards (to
coarser resolution levels) or downwards (to finer resolution
levels) in the tile tree (see Fig. 4). In addition, when the
height field was modified, a 2D maximum mipmap which
is used to accelerate the ray-casting process [DKW09] has
to be recomputed for each affected tile.

The propagation to coarser resolution levels is performed
instantly whenever an editing operation is performed. It is
simply realized by constructing the tile tree again as de-
scribed before, but now starting the construction at the nodes
storing those tiles that were affected. To avoid paging during
the update operation, we keep the ancestors of all rendered
tiles in GPU memory.

The propagation to finer levels is realized differently,
since in general the finer tiles which are affected by an
editing operation are not available on the GPU. Therefore,
during editing all applied operations are recorded, i.e., the
brush positions and action parameters. Once a finer tile is
requested—either for upload to the GPU or for rendering—
to which the changes have not yet been applied, the data

Disk

CPU

GPU

Change log:

at (x,y)

…

Figure 4: Propagation of changes. Left: The effect of an edit-
ing operation in a visible tile is immediately propagated to
the tile’s ancestors. The operation is stored in a change log.
Right: When a finer tile is required, operations in the change
log are applied to this tile, and the modifications are propa-
gated to the ancestors again to ensure consistency.

is reconstructed and the editing operations are first applied
before the data is rendered. By means of this delayed, on-
demand propagation, the number of update operations that
have to be applied at once is proportional to the number of
requested tiles in the current frame, regardless of how many
tiles in the tree are affected. Whenever such a delayed update
is performed, the resulting changes have to be committed to
the coarser levels as described. This is necessary since ap-
plying an editing operation to a finer tile and downsampling
the changes to a coarser tile is in general not identical to ap-
plying the operation directly to the coarser tile.

The update of modified tiles on disk is triggered via a
backup interval, which is set to 250 ms in the current imple-
mentation. If no further editing operations occurred within
one such interval, the tiles which have been altered are com-
pressed and stored in CPU memory again, so that they can
be removed from GPU memory when they are not needed
for rendering anymore. When CPU space is not available
any more, or a tile falls out of the pre-fetching region, the
modified tiles are written to disk.

To edit the terrain height field and orthophoto we pro-
vide several tools, such as a paint brush and a stamp to draw
color and/or height offsets (see Fig. 1 and 3), a flatten tool
to smooth high-frequency details (see Fig. 5 for an applica-
tion), and a special tool allowing a street to be drawn into the
terrain along a user-defined spline curve as shown in Fig. 2.
This variety shows that our approach is flexible enough to in-
tegrate more sophisticated terrain editing tools, for instance
as proposed by de Carpentier and Bidarra [dCB09].

Figure 5: Interactive flattening to remove scanning artifacts.
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4. Data Compression

In the following, we describe the four different stages our
GPU coder is comprised of. We first discuss the compres-
sion of RGB pixel data, and we then outline the particu-
lar changes to accommodate the processing of scalar scalar-
valued height fields. This is followed by a detailed descrip-
tion of the GPU realization of both the encoder and decoder
stage.

Color space transform: The RGB color values of each
tile’s orthophoto are first transformed into the YCoCg color
space [MS03] to exploit correlations between the color chan-
nels. The conversion de-correlates the channels, i.e., it con-
centrates most of the energy in the Y (luma) channel, thus
improving the compression rate. The YCoCg values are
transformed back into RGB values only for display. As in
JPEG2000, chroma sub-sampling is not performed.

DWT: After color space conversion, a DWT is performed
on the channels of the YCoCg pixel data separately using
the CDF 9/7 wavelet [CDF92]. A multi-resolution pyramid
is constructed in a bottom-up manner by repeatedly apply-
ing the DWT to the approximation coefficients at each level.
Our implementation of the DWT on the GPU mainly follows
the wavelet lifting implementation using CUDA as proposed
by van der Laan et al. [vdLJR11]. The lifting scheme gives
rise to a reversible (i.e. lossless) integer-based DWT for the
compression of each tile’s height field, as described below.
A floating-point DWT is used for lossy color compression to
achieve improved compression rates.

Quantization and push-pull: In a top-down manner, the
floating-point detail coefficients Ci at the nodes of the tile
tree are quantized into integer values ci via standard scalar
dead-zone quantization as ci = sign(Ci)

⌊
|Ci|
∆

⌋
, where ∆ is a

user-defined quantization step.

To avoid propagating quantization errors from the coarser
to the finer levels during reconstruction, we perform a push-
pull error compensation (see Fig. 6). Therefore, at every
node the difference is computed between the signal that is
reconstructed from the parent node using the quantized co-
efficients and the signal that is computed by the DWT on the
original data. The difference values are quantized, and they
are encoded and stored in addition to the quantized detail
coefficients. During reconstruction, these values are added
to the low-pass coefficients at the parent node before the in-
verse DWT is performed using these coefficients and the cor-
responding detail coefficients. This ensures that the low-pass
coefficients are of the same fidelity as the high-pass coeffi-
cients. Due to the recursive nature of the push-pull proce-
dure, any remaining errors will be compensated at the next
finer level.

A different strategy to circumvent this problem is em-
ployed in JPEG2000, where coefficients at coarser levels

DWT

Further lossy 
compression

Reconstruction

Difference

High-pass

Low-pass

Quantization

Quantization

Figure 6: Push-pull error compensation: To avoid propagat-
ing errors from coarser to finer levels, the difference between
the original low-pass coefficients and their reconstruction is
stored in addition to the detail coefficients.

are quantized using ever smaller quantization steps. This re-
sults in slightly better compression rates, but has the un-
desirable effect that the effective bit rate is increased at
every coarser level. Due to the embedding properties of
JPEG2000’s EBCOT coder, this can be compensated by ap-
propriately reordering the compressed bit stream, at the cost
of some storage overhead and a much more complex coding
scheme. Our approach, on the other hand, allows the bit rate
to stay approximately constant over all levels without adding
undue complexity in the decoder.

Coding: For encoding, the quantized wavelet coefficients
are concatenated into a sequential stream in scan-line or-
der. Since typical color images contain many regions ex-
hibiting only subtle color variations, this stream is very
likely to contain many zeros or very small entries. Note that
the same holds for typical terrain height fields, where over
large regions only slight variations in height are present.
We exploit this by using a run-length encoder followed by
a Huffman encoder to further compress the data and, thus,
to significantly reduce bandwidth limitations when stream-
ing the data from disk to the GPU and vice versa. This
coding backend allows for much higher throughput than
JPEG2000’s EBCOT at only slightly lower compression
rates (see Sec. 5).

Scalar Field Compression: For scalar field compression,
besides not requiring a color space conversion, a maximum
compression error should be guaranteed so that the screen-
space error during rendering can be predicted. To achieve
this, we first quantize the scalar height values such that the
vertical resolution matches the resolution of the underlying
sampling grid at the current level of detail, e.g., if height
samples are taken at a 1 m spacing, then these samples are
quantized such that the quantization intervals are 1 m, too.
The quantized values are then transformed via a reversible
integer DWT using the CDF 5/3 wavelet [CDF92] on the
GPU. Difference encoding to avoid the propagation of quan-
tization errors is performed in the same way as for color data.
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4.1. Run-Length Coder

The entropy coder first performs a run-length encoding of
the quantized wavelet coefficients (the symbols in the fol-
lowing discussion). In general, run-length encoding replaces
multiple sequential occurrences of the same symbol in a data
stream (a run) by one single instance of the symbol plus a
number indicating how often the symbol occurs. In our case,
many runs of symbols equal to zero are expected, while runs
of other symbols are rather unlikely. Therefore, we use a
variant of run-length encoding which only handles runs of
zeros: Each non-zero symbol in the input stream is replaced
by a pair of values containing the original symbol and the
number of zeros that precede it in the stream, called the zero
count.

4.1.1. Encoder

The parallel CUDA implementation of run-length encoding
makes use of data-parallel operations which can be realized
efficiently on the GPU. Firstly, each symbol is flagged as
either zero (marked by 0) or non-zero (marked by 1). An ex-
clusive parallel prefix sum [SHGO11] over these flags gen-
erates the output indices for all non-zero symbols. Next, the
zero count for each symbol is computed by subtracting from
the symbol’s index the index of its predecessor plus one.
A graphical illustration of the implementation is shown in
Fig. 7. Trailing zeros in the data do not need to be stored,
since the total number of symbols is known to the decoder.

41 30 31 1 0

74 11

1 0 0 0 0 0 1 1

Excl. scan

0 0

83

51 0

Out

In

Flag non-zero symbols

1 0 0 0 0 0 4 30 0

0 1 1 1 1 1 1 2 30

Valid symbols Valid indices

A[i] -= A[i-1]+1

Limit max zero count, insert extra zeroes

Figure 7: Parallel implementation of run-length encoding.
Input symbols (green arrays) are flagged and a scan oper-
ation generates output indices (blue arrays). The number
of removed zeros is stored (red array), and zeros may be
inserted into the symbol stream to limit the maximum zero
count.

To facilitate an efficient Huffman encoding (Sec. 4.2),
the zero counts should not be too large since this may in-
crease the length of the largest codeword significantly. To
avoid this, additional zeros are inserted into the compacted

symbol stream at locations where the zero count exceeds a
given limit (255 in our implementation). This is realized by
first computing the number of additional zeros to insert at
each index, and then performing an inclusive prefix sum over
these values to obtain an offset o for each entry. Finally, each
symbol and associated zero count is re-positioned according
to this offset in the symbol stream.

4.1.2. Decoder

The CUDA implementation of the run-length decoder first
performs an inclusive prefix sum over the zero counts, and
then adds to the resulting values the index of the respective
element to determine the original indices of the non-zero
symbols. Finally, the output array is cleared with zeros, and
each symbol is written to its target position in a scattered
write operation (see Fig. 8).

31 1 0

41 5 5

51 7 8

1 0 0 0 0 0 4 30 0

41 30

In

In

Out

Incl. scan

A[i] += i

Scatter

Figure 8: Parallel implementation of run-length decoding. A
scan over the zero counts (red array) yields preceding zeros
of each symbol. Adding each element’s index gives the orig-
inal indices (blue array) of stored symbols (green array).

Similar to the encoder, the run-length decoder uses only
data-parallel operations and thus maps very well to the GPU.
In particular, all memory operations except for the final
scatter operation can be perfectly coalesced into contiguous
memory transactions.

4.2. Huffman Coder

To further compress the run-length encoded symbol stream,
we have realized a Huffman coder on the GPU. Huffman
coding is an entropy coding technique which assigns a
variable-length codeword to each input symbol, where the
length of each codeword is determined by the symbol’s prob-
ability of occurrence. The codewords adhere to a prefix code
to allow unambiguous decoding. To map symbols to code-
words, a lookup table is generated and stored along with the
codeword stream. In our implementation, since the symbols
and zero counts typically occur with very different distribu-
tions, we encode them separately to improve the compres-
sion rate.
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4.2.1. Encoder

The Huffman encoder performs two basic operations: It
computes the Huffman table for the input data and then per-
forms the encoding of the data stream using this table.

Table Design: The computation of the Huffman table can
be further subdivided into (a) the computation of the relative
probabilities of all occurring symbols and (b) the assignment
of codewords of appropriate lengths to each symbol. The
first step is equivalent to building a histogram of the input
data, which can be realized on the GPU using atomic oper-
ations. However, atomic operations might become very in-
efficient if write conflicts occur and concurrent accesses are
serialized. As the distribution of wavelet coefficients is very
likely to be heavily skewed towards small values, many such
conflicts are expected in the first few histogram bins.

To avoid these conflicts, we store one histogram per
thread in shared memory and combine these histograms
in a second pass using a parallel reduce operation per
bin [Pod07]. However, the number of histogram bins that
can be processed per thread is strongly limited by the avail-
able shared memory. Thus, the occurrences are only com-
puted for the first few bins for which we expect the most con-
flicts, and the execution then switches to a kernel that com-
putes one histogram per warp [Pod07, SK07], i.e., a group
of threads working in a SIMD fashion. Even though this can
still lead to memory conflicts, our experiments have shown
superior performance since the number of conflicts is small
and a much larger number of bins per pass can be used.

The algorithm for computing the Huffman table first puts
all symbols into a priority queue where their probabilities
are used as keys, and then successively removes the two
least probable symbols and inserts a new placeholder item
with their combined probabilities. The number of times a
symbol (or its placeholder) has been processed in this way
corresponds to the length of the symbol’s codeword. Since
this algorithm is strongly sequential, it is realized on the
CPU. This requires a round-trip to the CPU; however, since
the Huffman table has to be stored to disk anyway, there is
only little additional overhead. Table construction includ-
ing GPU-CPU data transfer consumes less than 10% of the
overall encoding time.

Encoding: After the Huffman table has been built, the en-
coder replaces each symbol by its codeword and performs
a bit stream compaction. A naive implementation writes for
each symbol the bit-length of its codeword into an auxiliary
buffer and uses an exclusive prefix sum over these numbers
to compute the position of each symbol in the bit stream.
Then, each symbol can be written to the respective posi-
tion. However, as the codewords are not aligned to word
boundaries, this step requires atomic operations, and since
most codewords are much shorter than a memory word (32
bits) the performance is slowed down considerably by a high
number of write conflicts.

To reduce the number of conflicts, we let each thread write
k consecutive codewords. This also means that only every k-
th element of the bit index array is needed, so we sum every k
adjacent codeword lengths and then perform the prefix sum
operation only on the smaller set of elements. For optimal
memory bandwidth use, we perform the compaction step
in shared memory and afterwards write the compacted ar-
ray to global memory using coalesced memory transactions.
The proposed data-parallel implementation is illustrated in
Fig. 9. It is similar to the one proposed by Balevic [Bal09],
but uses the data-dependent Huffman table constructed in the
previous step.

4 1 1 3 2 20 1 2In

4 2 2 3 3 12 2 3

Out

2 1

3 2

Write codeword lengths

Excl. scan

6 5 15 5 5

0 6 11 26 31

Sum adjacent codeword lengths

4 1 1 3 2 20 1 2 2 1

Write codewords (sequential per thread)

0 11 20 5 Out

0 11 31 3636

A[i] -= A[i-1]

Figure 9: Parallel implementation of Huffman encoding.
Lengths of codewords corresponding to input symbols (green
array) are written into an auxiliary buffer. Every k adjacent
values (k = 2 in the example) are summed up. A scan opera-
tion computes the output bit index (blue array) for every k-th
codeword. Every m-th bit index (m = 2 in the example) is
stored as side information for the decoder. The last element
of the index array carries the length of the compacted stream
and is also stored. In the final step, codewords are written to
an output buffer (orange array) in groups of k per thread.

Since the decoder needs one of the codeword bit indices to
start each decoder thread, we store every m-th element of the
index array, i.e. the bit index of every k ·m =: n-th codeword
as side information. In our current implementation, k = 8 and
m = 16, so every 128-th index is stored. To save memory, we
do not store the absolute values of the indices, but the incre-
ments from one index to the next. This allows storing the
increments as 16 bit integers, which is sufficient to accom-
modate 128 codewords of 511 bits each—far more than the
maximum possible codeword length for reasonable numbers
of input symbols [AMM00].
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4.2.2. Decoder

The decoder receives the codeword stream and the incre-
mental bit indices that were stored by the encoder as side
information. An inclusive prefix sum is performed first to
compute the bit index of every n-th codeword. For each
such index, one thread is started and decodes n symbols se-
quentially. The implementation of this step is similar to the
one proposed by van Waveren [vW06], but we construct the
lookup table to handle short symbols on the GPU.

To allow coalesced memory write operations, every t = 32
consecutive threads (one warp) write their symbols simul-
taneously in an interleaved order during decoding. In this
way, all threads in one warp write to consecutive memory
addresses. Each block of t×n interleaved values is then read
into shared memory, where it is reordered and written back
to global memory. Reordering allows accessing the data val-
ues in a coalesced way, resulting in an improvement of the
decoder throughput by about 40%. Fig. 10 illustrates the par-
allel implementation of the Huffmann decoder.

4 1 1 3 2 20 1 2 2

In

0 11 31

Out

In

4 2 1 20 1 1 3 2 2

36

0 11 20 5

Incl. scan

1

Decode (sequential per thread)

1

Reorder

Figure 10: Parallel implementation of Huffman decoding. A
scan operation over relative bit indices gives the bit indices
(blue array) of every n-th codeword (n = 4 in the example).
n symbols per thread are sequentially decoded (green array)
from their codewords (orange array). To achieve coalesced
memory accesses, t consecutive threads (t = 2 in the exam-
ple) write their output in an interleaved order.

Making the decoder threads each write a symbol simul-
taneously implies that they have to read from their input bit
streams at different speeds, as their input codewords gener-
ally have different lengths. Therefore, the reads can never
be coalesced. To avoid frequent accesses to the input data,
each thread caches 2×32 bits of the input bit stream in reg-
isters. In this way, the threads only have to access the global
memory after a codeword has been decoded completely.

5. Results

To demonstrate the efficiency of our terrain editing approach
we have used a textured terrain height field of Vorarlberg,

Austria. The orthophoto has a size of 447000×677000 pix-
els (about 300 gigapixels) at a spatial resolution of 12.5 cm.
The height field is given on a 2D grid with a spatial reso-
lution of 1 m. All timings presented in this work were per-
formed on a PC with an Intel Xeon E5520 CPU (quad core,
2266 MHz), 12 GB of DDR3-1066 RAM, and an NVIDIA
GeForce GTX 580 graphics card, except where explicitly
noted otherwise.

5.1. Rendering and Editing

Rendering the terrain at a screen-space pixel error of 0.7 us-
ing GPU ray-casting takes between 15 and 20 ms per frame
on a 1920×1080 viewport. Compared to rendering, the cost
of applying an editing operation to the uniform height and
color maps at a particular level is negligible in general. Only
when a very large part of the terrain is modified at once, or
when many individual editing operations have been logged
and have to be applied at once to update the data, does alter-
ing the respective maps become more costly than rendering.
Since for editing purposes the height maps and orthopho-
tos of all visible tiles including their ancestors need to be
available on the GPU in uncompressed form, for higher-
resolution viewports and a thereby increased number of tiles,
the limited GPU memory can become a bottleneck. On the
other hand, even in the current scenario where a very large
terrain field is processed, all required data could always be
stored in GPU memory and CPU-GPU bandwidth limita-
tions were not observed.

After the editing operations have been applied at a partic-
ular level, the resulting changes have to be committed into
the tile tree. This requires computing a number of DWTs,
encoding the resulting detail coefficients, and finally writing
the updated tiles to disk. For instance, if one tile (height and
color) on the finest level of a tile tree of depth 12 is modified,
the DWTs take about 15 ms, encoding takes about 120 ms,
and writing the data to disk takes about 60 ms.

5.2. Compression Rate and Quality

To assess the compression rate and reconstruction quality of
the GPU coder, we have performed a number of tests us-
ing the Kodak test image suite, the “New Test Images” suite
(RGB 8 bit) [Raw11], and a set of 100 sub-images of the
Vorarlberg orthophoto, each of 2048×2048 pixels. On each
image a four-level DWT was performed, and the resulting
coefficients were compressed as described.

We have compressed the same images using JPEG,
JPEG2000, and the S3TC DXT1 format. For JPEG and
JPEG2000 compression, we used the ImageMagick library
v. 6.7.0 [Ima11]. The S3TC compression was performed via
the Squish library v. 1.10 [Bro08] at the highest quality set-
ting (iterative cluster fit). It is worth noting that JPEG and
DXT1 do not support resolution-incremental decoding. In
an application where this is required, the effective bit rates
would thus be about 1.3 times higher than the given ones.
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Figure 11: Graphs of PSNR vs. bpp for the test image suites “Kodak”, “New Test Images” and “Vorarlberg”.

Fig. 11 shows the compression quality in dB of RGB
PSNR depending on the bit rate in bits per pixel (bpp). It
can be seen that JPEG2000 gives the best results in terms of
compression rate. Our method usually outperforms JPEG,
often significantly, except for bit rates below 1.3 bpp for
“Kodak” and below 0.5 bpp for “New Test Images”. How-
ever, at such low bit rates, neither algorithm can produce vi-
sually acceptable results. The fixed-rate DXT1 compression
is clearly outperformed by all other approaches.

When compressing the entire Vorarlberg orthophoto, our
method achieves 37.1 dB PSNR at 1.30 bpp, yielding a com-
pression ratio of 18.4:1. For comparison, DXT1 achieves
36.4 dB at 5.33 bpp (including mipmaps). The scalar height
field (stored as 16-bit integers) was compressed at 1.54 bpp
and a compression ratio of 10.4:1 by our approach.

5.3. Compression Throughput

To produce realistic and robust performance numbers, we
have measured the times required for encoding and decod-
ing the entire Vorarlberg data set excluding disk I/O time.
Encoding the 300 gigapixel orthophoto at 1.30 bpp using 11
DWT levels took 19.0 min, including the construction of the
multi-resolution pyramid. This corresponds to a throughput
of 270 MPix/s. Decoding took 6.9 min, giving a throughput
of 730 MPix/s.
Encoding the entire 4.9 gigasample height field using 8
DWT levels took 7.0 s at a 700 MPix/s throughput. Decod-
ing took 2.6 s at a 1780 MPix/s throughput.
The encoding times include the download of the compressed
data from the GPU, and the decoding times include the up-
load of the data to the GPU. Thus, the timings realistically
reflect the performance that can be achieved when embed-
ding the compression scheme into a terrain viewer, which
streams compressed data from disk to the GPU, where it
is decoded, displayed, modified, encoded again, and finally
downloaded to the CPU and stored on disk.

For comparison, encoding to JPEG using the jpgtest pro-
gram from the libjpeg-turbo library v. 1.1.1 [lib10] at qual-
ity 90 and 4:4:4 chroma sampling achieves 53 MPix/s on
a single CPU core. The decoder achieves a throughput of
70 MPix/s. With 4:2:0 chroma sampling, the numbers im-
prove to 80 MPix/s and 95 MPix/s, respectively. Extrapo-
lating to four available CPU cores, the encoder throughput
comes close to our approach, but decoding is still signifi-
cantly slower. It is also worth noting here that the given per-

formance measures for JPEG compression do not include
building and compressing a multi-resolution pyramid. In the
performance measures of our approach, these operations are
always included.

The Kakadu library [Kak11], one of the fastest JPEG2000
implementations, reports a throughput of 25 and 35 MPix/s,
respectively, for encoding and decoding, on a 2.4 GHz
Core 2 Duo CPU. On a quad core architecture similar to
ours, it can be expected that a considerable increase in
throughput can be achieved. However, it is worth noting that
the Kakadu software runs entirely on the CPU, so CPU-GPU
bandwidth can become a bottleneck. CUJ2K [FWH∗09],
a CUDA implementation of a JPEG2000 encoder (but no
decoder), achieves a throughput of only 22 MPix/s on our
GeForce GTX 580, excluding data transfer between CPU
and GPU. Encoding of RGB pixel data to DXT1 using the
NVTT GPU compressor [NVI10] achieves 21 MPix/s.

6. Conclusion and Future Work

We have presented a prototype terrain editing system that al-
lows altering and simultaneous rendering of high-resolution
terrain fields at high quality and interactive rates. It employs
a regular grid structure for the height field, and employs a
GPU-based ray-caster for rendering. Both pixel and height
data are compressed using a custom scheme that provides
both encoding and decoding at much higher rates than disk
transfer and achieves compression rates that compare favor-
ably to JPEG and JPEG2000 compression.

Since currently our work serves as a proof-of-concept tool
demonstrating the possibility to interactively edit gigasam-
ple terrain fields, in the future we will focus more on the
specific editing operations that are required in real-world ap-
plications. In addition, we will analyze the potential of the
GPU decoder for (parallel) gigavoxel volume rendering, and
we will investigate the possibility to perform visually guided
segmentation or annotation on large pixel and voxel data.
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