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Abstract. Accurate high-resolution 3D models are essential for a non-
invasive analysis of phenotypic characteristics of plants. Leaf surface ar-
eas, fruit volumes and leaf inclination angles are typically of interest. This
work presents a globally optimal 3D geometry reconstruction method
that is specialized to high-resolutions and is thus suitable to reconstruct
thin structures typically occuring in the geometry of plants. Volumetric
3D models are computed in a convex optimization framework from a set
of RGB input images depicting the plant from different view points. The
method uses the memory and run-time efficient octree data structure for
fast computations of high-resolution 3D models. Results show accurate
3D reconstructions of barley, while an increase in resolution of a factor of
up to 2000 is achieved in comparison to the use of a uniform voxel based
data structure, making the choice of data structure crucial for feasible
resolutions.
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1 Introduction

Plant phenotyping increasingly relies on precise 3D models of plants, demanding
for automated and accurate reconstruction methods specialized for plant geom-
etry. Applications include the determination of volume and surface dimensions,
leaf quantification, and leaf inclination angles [28]. These applications share the
benefit from accurate high-resolution 3D plant models. Since manual examina-
tion of phenotypic characteristics is usually time consuming and destructive,
non-invasive and automated methods are needed for high-throughput applica-
tions and monitoring of specimen over time.

Convex optimization methods provide a powerful technique for inferring the
3D structure of an object from a set of images in a globally optimal way [16].
Volumetric methods as used in [16, 11] allow for reconstructions of dense surfaces,
at limited resolution due to large memory requirements of the underlying data
structures. Point cloud reconstructions from images as used in [9] require less
memory while neglecting density.

3D reconstruction of plants requires special consideration to the fine scaled
features typically occuring in plant geometry. The usual assumption that the
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object to reconstruct is compact does not apply. Reconstruction of thin struc-
tures based on silhouette constraints as proposed in [6] allows to preserve fine
structures while the uniform voxel based data structure still limits the resolu-
tion. For thin objects volumetric approaches yield large amounts of empty space,
implying the need for more efficient non-uniform data structures.

Originally introduced for computer graphics, octrees [23] provide a memory-
efficient data structure for large scale 3D objects. Large-scale reconstructions
for fusion of RGB-D images into a volumetric model have shown that an octree
based data structure avoids memory limitations in 3D reconstructions [31]. A
non-hierarchical memory-efficient approach for volumetric representations is the
narrow band method. Narrow bands for 3D reconstruction in graph cuts have
been presented in [18].

Full 3D shape measurements of plants allow for a variety of phenotypic ap-
plications. However, phenotyping is a major bottleneck in crop plant research
[14], which strongly benefits of automated approaches especially when dealing
with large datasets. A special importance lies on high-resolution reconstruction
of plant shapes for a better comprehension of phenotypes [7]. Laser scanners
are a capable tool for the aquisition of high-precision 3D point clouds of plants
[21], however provide no volumetric and surface area information. Time-of-flight
cameras and RGB-D sensors like the Kinect capture 3D information at a lower
resolution. They are also used in agriculture however are known to be less robust
to bright illumination than stereo vision [1, 13]. In the last years, image analysis
has become a widely used technique for non-invasive methods for plant pheno-
typing [8]. Applications include the monitoring of growth rates which can be
used as a measure for drought tolerance of wheat and barley [25], classification
of leaves and stems [26], or computation of leaf inclination angles [3]. In [29]
an image based method for 4D reconstruction of plants based on optical flow
is introduced. Another application is the determination of the leaf canopy area
from images [19], an ecological indicator variable whose estimation usuallly is
laborious [17].

This work presents a novel method for volumetric 3D reconstruction of plants
from a set of RGB images, specialized on accuracy and high-resolution. The
method is implemented in a convex framework allowing for global optimization of
the chosen model which makes it independent of initializations. The underlying
data structure is based on octrees, which enable a fast and memory-efficient
implementation, making high resolutions possible. In this work we show that
the choice of data structure is not only beneficial for reducing run-time and
memory requirements, but crucial to make high-resolutions possible.

Fig. 1 shows results of the proposed method for a 3D reconstruction of barley.
For a plant of 10 cm height a resolution of 1.8 · 10−6 mm3 is achieved by the use
of an octree data structure. The use of octrees enables a more than 2000 times
higher resolution compared to a uniformely spaced voxel grid using the same
amount of memory. Especially in the case of thin structures, the data structure
is critical to avoid memory limitations.
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(a) 4 of 25 (b) Camera (c) Reconstructed
Input Images Positions 3D Model

Fig. 1. 3D-Reconstruction of a barley, computed from 25 input images. The recon-
structed 3D model consists of ∼12 million octree nodes.

2 High-Resolution Stereo Reconstruction with Octrees

We consider a continuous image domain Ω ⊂ IR2. Given a set of m input images
I1, . . . , Im : Ω → IR depicting the object from different view points, we compute
a surface Σ ⊂ IR3 that gives rise to the images. To reconstruct a full 3D model,
each object point must be visible in at least two images. Fig. 1 (b) shows an
example for 25 camera positions, computed with software of [22] and [30].

The surface is optimized inside the visual hull [20] H ⊂ IR3 which is deter-
mined by silhouette images. The silhouette images Si : Ω → {0, 1}, i = 1, . . .m
are defined as Si(p) = 1 at points p ∈ Ω that depict the plant and Si(p) = 0
otherwise, i.e. at points that depict background. We compute silhouette images
using an interactive image segmentation method [33]. The visual hull is the
smallest volume whose projections to the input images cover the silhouettes of
the object.

We propose the use of volume constraints to ensure a stable substance of
the reconstructed object. Volume constraints have been proposed for single view
reconstruction [32] and image segmentation [15, 10].

2.1 Surface Optimization with Volume Constraints

The surface Σ is represented implicitly by an indicator function 1Σ : H → {0, 1}
that defines a segmentation of the volume enclosed by H to plant, i.e. 1Σ(x) = 1,
and background, i.e. 1Σ(x) = 0. Relaxing the domain to the continuous domain
[0, 1] allows for convex optimization of the corresponding segmentation u : H →
[0, 1]. We consider the following convex optimization problem

min
u

{∫
H
g(x) |∇(u)|+ λ

∫
H
f(x)u(x) dx

}
, s.t. V(u) ≥ c, (1)

where V refers to the volume of the object, i.e.

V(u) =

∫
H
u(x) dx. (2)

and c ∈ IR is the minimum volume. In the experiments shown in this paper,
the volume constraint parameter was set to c = 0.9 · |H| which implies that the
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volume of the segmented object should be at least 90% of the volume enclosed
by the visual hull. The data term f : H → IR, weighted with λ ∈ IR, implements
the assumption that the visual hull is a rough estimator for the object and is
based on the distance of a point to the border ∂H of the domain:

f(x) = 1− min
x̂∈∂H

‖ x− x̂ ‖ . (3)

For the m input images I1, . . . , Im : Ω → IR the photoconsistency g is com-
puted as the intensity difference of the best matching image pair:

g(x) = min
i,j∈{1,...,m},i6=j

(|Ii(πi(x))− Ij(πj(x))|), (4)

where πi : IR3 → Ω is the projection of a 3D point x to image Ii. g(x) is used as
a weighting function for the gradient norm |∇(u)|, directing the surface through
points whose projections to the images have similar intensity.

A minimizer of (1) is computed using a primal-dual optimization [5] scheme
with gradient descent in the primal variable u and gradient ascent in the dual
variable p : H → IR3

pt+1 = ΠC

(
pt + τ∇ut

)
(5)

ut+1 = ΠV
(
ut + σ(div(pt+1)− λf)

)
(6)

and the projections

ΠC(p) =
p

max
{

1, |p|g

} (7)

ΠV(u) = u+ max

{
1

|H|

(
c−

∫
H
u(x) dx

)
, 0

}
. (8)

The time steps τ and σ were set to τ = σ = 0.3. The projection ΠV projects the
current u to the volume constraint V(u) ≥ c, and is computed analog to the area
constraint in [15]. The projection ΠC was presented in [4]. The boundary con-
ditions are Dirichlet conditions for the gradient, i.e. ∇u|∂H = 0, and Neumann
conditions for the divergence, i.e. div(p)|∂H = p.

2.2 A Memory-Efficient Data Structure using Octrees

An octree is a tree data structure whose nodes have either eight or no sub nodes.
Nodes with eight sub nodes are denoted as inner nodes and nodes without sub
nodes as leaf nodes. Octrees provide a memory-efficient data structure for 3D
volumes.

Building the Octree The octree data structure is computed from the silhou-
ette images in a top-down approach starting at a root node enclosing the whole
scene depicted in the images. Subsequently, nodes are subdivided depending on
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Depth 7 Depth 8 Depth 9 Depth 10 Depth 11 Depth 13

Fig. 2. Octree data structure for increasing resolution, i.e. depth of the tree. The figures
show the bounding boxes of all leaf nodes in the deepest level of the octree. The data
structure is built in a top-down method where each level is complete in itself but can
be refined for higher resolution.

the structure of the visual hull. Fig. 2 shows an example octree at different steps
of the iteration.

Each node gets a assigned a bounding cuboid with coordinates C := (xmin,
ymin, zmin, xmax, ymax, zmax) that define the volume enclosed by the node. The
camera positions and viewing angles define a bounding cuboid which define the
respective coordinates of the root node. The nodes are subsequently divided into
eight sub-nodes of equal size if the visual hull passes the bounding cuboid of the
node. The visual hull passes the cuboid if the projection of the cuboid’s faces to
the images contains both plant and background for at least one of the m input
images. The nodes are refined until a predefined maximal depth is reached that
corresponds to the desired resolution. In each iteration the octree contains the
visual hull in the leaves of the deepest level. Note that it is not necessary that
the bounding cuboid is as small as possible since the subsequent subdivision of
the data structure will prevent the allocation of too many nodes.

Neighborhood Connectivity of Nodes To compute the derivatives for the
gradient and divergence operators in the optimization update steps (5) and (6)
each leaf node in the octree requires access to the function values of its neighbor-
ing nodes. Each node stores a reference to its parent node, and the inner nodes
also to the eight sub nodes. Storing additional references to the six neighboring
nodes respectively saves run-time while needing more memory. We compute the
neighboring nodes for each node every time when access to it is needed. We
chose not to precompute them, because experiments showed that the run-time
improvement is not significant. Due to the bounding cuboid each node has de-
fined, neighboring nodes can be found by its coordinates via traversing one path
of the tree from the root to the node. The respective run-time is in O(log(n)),
where n is the number of nodes in the octree and log(n) is the maximal depth.

3 Performance Evaluation

We evaluate the method with respect to accuracy and memory requirements for
3D reconstructions of barley.
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Fig. 3. Volumetric 3D Reconstruction of a barley, computed from 25 RGB images. The
dense surface is optimized in the leaf nodes of deepest level in an octree of depth 14.

3.1 High-Resolution Volumetric 3D Reconstruction of Barley

Fig. 3 shows reconstruction results for barley for the input images shown in Fig.
1(a). The images were captured with a standard consumer camera at a resolution
of 5184× 3456 pixels. The camera capturing positions were computed using the
software of [22] and [30]. The octree that was computed to reconstruct the 3D
model has a depth of 14 and its computation took around 30 minutes, making
the method suitable for offline reconstructions.

3.2 Accuracy of the Reconstruction

We measure the accuracy of the reconstructed 3D model by projecting its silhou-
ette to the input images and computing the difference to manually segmented
ground truth images. Since an objective ground truth in 3D is not available,
the projection error is measured in the image domain. Fig. 4 shows that the
proposed 3D reconstruction with octrees enables accurate 3D reconstruction of
fine-scaled structures of the plant. The figure shows a projection of the recon-
structed object to one of the original images. The similarity of the projected
silhouette compared to the manually segmented ground truth is 0.96. As simi-
larity measurement the dice coeffient was used, where a value of 1 corresponds

(a) Silhouette (b) Close-up (c) Close-up (d) Close-up
Projection View 1 View 2 View 3

Fig. 4. The high-resolution data structure allows for accurate 3D reconstruction. (a):
The silhouette of the reconstructed 3D model is projected to one of the input images.
(b-d): Close-up views visualize the accuracy of the reconstruction. The similarity of
the projected silhouette compared to the ground truth is 0.96.
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Uniform Grid: Octree:

Octree Number of Memory Number of Memory Comparison
Depth Voxels Requirement Nodes Requirement Factor

7 643 1 MB 103 85 KB 12
8 1283 8 MB 3 · 103 240 KB 34
9 2563 64 MB 9 · 103 650 KB 101

10 5123 512 MB 27 · 103 1.9 MB 269
11 10243 4 GB 96 · 103 6.6 MB 621
12 20483 32 GB 413 · 103 29 MB 1129
13 40963 256 GB 2 · 106 172 MB 1524
14 81923 2 TB 15 · 106 1 GB 2048

Table 1. Comparison of memory requirements (approximate values) for 3D recon-
struction in a uniformely spaced voxel grid versus octree. Memory limits of a current
consumer PC are reached for the regular grid already at a resolution of 10243, while
an octree of depth 14 fits. This makes the octree a suitable data structure for 3D
reconstruction of thin structures occuring in plants.

to a perfect overlap and 0 to no overlap. The close-up view in Fig. 4 (c) shows an
example where the reconstructed model is inaccurate: the reconstruction does
not contain the whole leaf in the middle of the image. In this case this is due to
the fact that the leaf is not visible in some of the images and the region is hence
segmented as background in 3D.

3.3 Performance Analysis

The memory requirements and resolution of the proposed method are compared
to a standard volumetric approach using regular grids. A regular grid is a sub-
division of a 3D volume into uniformely sized cuboids, also denoted as voxels.
This yields a data volume with large amounts of empty voxels – in contrast to
the octree with nodes of different sizes depending on the structure of the shape.

Tab. 1 shows a comparison of memory requirements for the octree data struc-
ture and the alternative representation using a regular grid. The values for the
uniform grid were computed for each resolution while the values for the octree
were measured experimentally for the example 3D model shown in Fig. 3. In
each row of the table the actual size of a voxel is the same as the size of an
octree node. Due to the connectivity of nodes the memory requirement for a
single octree node is higher than the requirement for a single voxel, however
the overall memory consumption is significantly reduced. For the uniform grid
a resolution of 10243 reaches the limit of a current consumer PC with 4 GB
RAM. The octree of depth 14 requires 1 GB, corresponding to a voxel volume of
81923. For a plant of 10 cm height, an octree node inside the visual hull covers
a volume of 1.8 · 10−6 mm3, yielding a 2048 times higher resolution than a voxel
of the regular grid fitting in the same memory, which covers a volume of 0.0037
mm3. The experiment shows that the choice of data structure is crucial to make
high-resolutions feasible for volumetric reconstructions.
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4 3D Plant Shape Models for Phenotyping

Full 3D models of plants allow for phenoypic analysis including the computation
of volumes and surface areas or leaf inclination angles. Further analysis like
monitoring of plant growth is possible since the plants are not destroyed during
the process of reconstruction.

4.1 Measuring Volume and Surface Area

The volume and surface area of a plant are fundamental indicators for growth
analysis [27]. Volumetric models have the advantage that precise information on
these features can be directly extracted from the shape.

The volume V(u) measured in voxels can be computed from the segmented
surface u using equation (2). To obtain absolute measurements in cm3, a refer-
ence measurement is necessary, for example the overall height h of the plant in
cm, or in case of fixed cameras the baselines between the camera optical centers.
The absolute volume V (u) of the plant model can then be computed by a re-
spective scaling of V(u), i.e. with h3/23d, where d is the depth of the octree. If no
reference measurement is given, the volume can be computed up to a constant
scalar factor.

The surface area A(u) corresponds to the boundary size of the reconstructed
shape and can be computed from u with

A(u) =

∫
H
|∇(u)|dx. (9)

For the barley shown in Fig. 3 we measured a volume of V (u) ≈ 3.101 cm3 and
a surface area of A(u) ≈ 106.1 cm2 for a plant height of 10 cm.

4.2 Quantification of Leaves

The total leaf number of a plant is an important trait used to monitor vegetative
development. It can be used as an indicator to measure influences of drought
[12] or to determine flowering times [24].

The full 3D models of plant shapes allow for automated quantification of
leaves as the experiment in Fig. 5 shows for a barley. The reconstructed 3D
model (Fig. 5 (a)) is segmented into two regions according to the eigenvalues of
the second-moments tensor of the surface (Fig. 5 (b)). The 3D second-moments
tensor [2] of a shape u is defined as

M(u) =

∫
H
Gσ ∗ ∇u∇u> dx (10)

where Gσ is a gaussian convolution with standard deviation σ. The eigenvalues of
M represent the distribution of gradient directions of the shape, and thus provide
a robust classifier for a segmentation based on local geometric structures. Due to
the high resolution of the 3D model the eigenvalues can be computed precisely.
The connected components (Fig. 5 (c)) of the resulting segmentation allow for
an automated quantification of leaves.
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(a) 3D Model (b) Segmented (c) Connected
of a Barley Surface Components

Fig. 5. Segmentation of the 3D surface, based on the eigenvalues of the second-moments
tensor. The connected components of the segmentation yield quantitative information
like the number of leaves in the plant.

5 Conclusion

We proposed a method for the reconstruction of high-resolution volumetric 3D
models of plants from a set of RGB images. The reconstructed full 3D models
allow for accurate phenotypic analysis of the geometric properties of plants in-
cluding volume and surface areas or quantification of leaves. We showed that
the octree data structure is especially suitable for volumetric reconstruction of
thin features that typically occur in plant geometry. Moreover, we showed that
the choice of a suitable data structure is essential to make high-resolution 3D
model reconstruction possible. Compared to standard data structures, like reg-
ular grids, up to 2000 times higher resolutions are feasible. Possible future work
includes a space-time reconstruction of plant growth. The non-invasiveness of
the method allows for a monitoring of specimen over a time period.
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