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Abstract. Petroglyphs can be found on rock panels all over the world.
The possibilities of digital photography and more recently various 3D
scanning methods opened a new stage for the documentation and analysis
of petroglyphs. The existing work on petroglyph shape similarity has
largely avoided the questions of articulation, merged petroglyphs and
potentially missing parts of petroglyphs. We aim at contributing to close
this gap by applying a novel petroglyph shape descriptor based on the
skeletal graph. Our contribution is twofold: First, we provide a real-world
dataset of petroglyph shapes. Second, we propose a graph-based shape
descriptor for petroglyphs. Comprehensive evaluations show, that the
combination of the proposed descriptor with existing ones improves the
performance in petroglyph shape similarity modeling.

Keywords: Petroglyph similarity, shape similarity, graph matching, graph
edit distance, graph embedding

1 Introduction

Petroglyphs have been pecked, scratched and carved in rock panels all over the
world. The documentation with digital photography and more recently various
3D scanning methods enabled (semi-)automated analysis of petroglyphs and at-
tracts research activity. In the past few years, works related to segmentation of
petroglyph images [1], automated classification of petroglyph shapes [2][3][4][5]
and digital presentation of rock art [6] have been published. The large number
of single petroglyphs makes the usage of automated analysis methods attrac-
tive. In this paper, we contribute to the evaluation of shape similarity of pet-
roglyphs. Our contribution is twofold: First, we provide a real-world dataset of
petroglyph shapes that have been digitized from tracings of petroglyphs of the
UNESCO world heritage site Valcamonica. The dataset further contains fine-
grained expert annotations from archeologists. Second, we propose and evaluate
a graph-matching approach for shape similarity of petroglyphs.

The motivation to investigate the skeletal graphs of petroglyphs for shape
matching is with respect to our ultimate goal: The retrieval of possibly merged
and unfinished or damaged (i.e. partial) petroglyphs from full rock panels. Hence,
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we need a setup that not only requires invariance against affine transformations
and articulations but also against partial shapes as well as merged shapes.

Merged or partial shapes pose two problems to shape descriptors and shape
matching in general. First, the object boundaries have to be determined and
second, the recognition of merged or partial shapes requires shape descriptors
or matching methods that can recognize partial models. Existing state-of-the-
art methods for petroglyph shape similarity approaches do not fulfill all these
requirements. Therefore, we evaluate the discriminative performance of skeletal
graphs of petroglyphs. This paper demonstrates, that skeletal graphs are a well-
suited description for future part-based retrieval methods.

2 Related Work

Numerous surveys about shape analysis have been published, comprehensive and
important in this field are the surveys by Pavlidis [7], Loncaric [8], Zhang and
Lu [9] as well as by Yang et al. [10]. Classifications and taxonomies of shape
descriptors have been proposed in the mentioned surveys in different variants. A
widely used common denominator is the distinction between contour-based and
region-based descriptors.

Latecki et al. compared several shape descriptors on the MPEG-7 CE-Shape-1
database [11]. The database contains only complete shapes with closed con-
tours. They propose three main categories for shape descriptors: Contour-based
descriptors, region-based descriptors and skeleton-based descriptors. They in-
vestigated robustness to scaling and rotation, similarity-based retrieval as well
as motion and non-rigid deformations. The weakest performing descriptor in all
cases was the skeleton-based approach, the most significant drawback is the lack
of robustness against scaling and rotation. The authors assume, that none of the
existing approaches to compute skeletons is robust enough. But, since the pub-
lishing of this paper in the year 2000, promising skeletonisation algorithms have
been proposed and evaluated (e.g. [12]). We summarize region-based, contour-
based and skeleton-based approaches that are relevant for our work and include
petroglyph-related work where available.

2.1 Region-based Descriptors

Zhu et al. propose the usage of a slight modification of the generalised Hough
transform (GHT) for the mining of large petroglyph datasets [3]. The main argu-
ments for GHT and against other shape similarity measures are the existence of
petrogplyph images where a single petroglyph consists of several parts and the
possibility of merged parts of petroglyphs that drastically change the topology
of the petroglyphs. They extensively evaluate their approach and achieve good
results. However, they mostly evaluate synthetic petroglyph shapes or simple
petroglyph shapes drawn by humans rather than the more exact tracings based
on peck marks which we use (see Section 3.1). Deufemia et al. use the radon
transform of petroglyph images as shape descriptor for unsupervised recognition
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via self-organizing maps (SOM) [4]. In a second step, they use a fuzzy visual
language parser to solve ambigous interpretations by incorporating archaeologi-
cal knowledge. They evaluate the approach on a large dataset and achieve good
results. However, Deufemia et al. as well as Zhu et al. do not consider partial or
merged petroglyphs, i.e. part-based retrieval that is necessary for petroglyphs in
real-world scenes.

Krish and Snyder propose the shape recognition approach SKS [13] which
is based on the generalised Hough transform. They compare the performance
of SKS with Hu moments, curvature scale space (CSS, see 2.2) matching and
shape context (SC, see 2.2). Besides affine transformations, they evaluate partial
shapes. The SKS feature performs good on partial shapes. But, the evaluation
data set consists of 31 different shapes only and does not contain merged shapes.4

Generally, region-based descriptors have the advantage that they do not need
complete contours for descriptor extraction.

2.2 Contour-based Descriptors

Mokhtarian et al. propose curvature scale space (CSS) image matching [14][15][16].
They smooth a contour by convolution with a Gaussian kernel in different scales
(i.e. different kernel sizes of the Gaussian kernel). Subsequently, they find the
curvature zero crossings on the contour. The descriptor - the CSS image - con-
sists of the zero crossings in a diagram where the size of the Gaussian kernel is
on the y-axis and the normalized path length of the curve is on the x-axis. This
CSS image is used to match shapes. Mai et al. use the CSS descriptors to acquire
contour segments invariant to affine transformations [17]. They utilize the local
maxima in the CSS image to locate the affine-invariant points and segment the
contour at these points. They match the segments with a dynamic programming
approach. They achieve very good experimental results. They outperform the
dynamic programming approach by Petrakis et al. [18], who are utilizing con-
tour segments as well. Belongie et al. propose the widely used shape context
(SC) descriptor [19]. They sample points on the contour of an object. For each
point, they compute the shape context based on the spatial distribution of the
other points on the shape contour. They match two shapes by estimating the
best transformation from one shape to the other and determining a dissimilarity
based on shape context distance, appearance cost and transformation cost.

Deufemia et al. [5] propose a two stage classification of petroglyphs. They use
shape context descriptors to provide an initial raw clustering with self-organizing
maps. In the second step, they use an image deformation model to classify the
petroglyph shapes. They evaluate their approach on a relatively small dataset
(17 classes with 3 exemplars) that they enlarge by using 30 affine transformations
of each image.

4 The data set does not include petroglyphs.
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Fig. 1. This figure shows a part of a tracing of a rock in Valcamonica (Coren di Re-
dondo, Rock 1). c©Alberto Marretta, used with permission

2.3 Skeleton-based Descriptors

Siddiqi and Kimia propose a shock grammar for recognition [20]. Later, Siddiqi
et al. propose the usage of shock graphs for shape matching [21]. Shocks are
used to provide a structural description of 2D shapes. They are contour-based
and deliver a medial axis of the shape, that has additional information for each
part of the skeleton. The representation of the shape is a directed acyclic shock
graph, which is used for shape matching.

Aslan Skeletons are coarse skeletons [22]. They are matched via tree edit
distance and have been evaluated on different data sets with good results [23][24].
However, while they are insensitive to articulation and affine transformations,
they can not be used for merged shapes, for shapes with holes and for shapes
with large missing parts.

Ling and Jacobs propose the usage of the inner-distance, which is the short-
est path between two landmark points (in this case contour points are used) of a
shape [25]. Hence, they implicitly embed skeletal information in the descriptor.
The distance between two contour points is the shortest path within the sil-
houette of the shape instead of the Euclidean distance between the two points.
They use the idea for three approaches to shape description. First, they com-
bine the inner-distance with multi-dimensonal scaling. Second, they utilize the
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inner-distance to build a new descriptor based on shape context, and third they
extend the second approach with appearance information of the shapes along
the inner-distance lines. They evaluate the approach on several datasets with
good results. They state, that the proposed descriptors are invariant/insensitive
to articulation and are capable to capture part structures.

Bai and Latecki introduce a skeleton-based approach that matches silhouettes
based on skeleton paths, which are the geodesic paths between skeleton endpoints
[26]. The shortest paths are represented by the radii of the maximum inscribed
discs at skeleton points. They use DCE (Discrete Curve Evolution [27]) for the
skeleton pruning. The descriptor is on two layers. First, the description of a
skeleton endpoint is constructed from the shortest paths starting at this point,
and second the similarity of two shapes is computed by matching the descriptors
of the skeleton endpoints. They experimentally show, that the method is robust
against articulations, stretching and contour deformations. Bai et al. combine
contour features with skeletal features to improve shape classification [28]. They
state, that contour-based approaches can represent detailed information well,
and are up to a certain extent robust against partial and merged shapes but
lack invariance against articulation and non-rigid deformation. In contrast to
that, skeleton-based approaches are robust against non-rigid deformations. For
the contour segments, they follow the ideas of Sun and Super [29], but use DCE to
determine the segments. They achieve 96.6% classification rate on the MPEG-7
CE-Shape-1 [11] database. Xu et al. extend the skeleton path approach [26] by
also considering junction points for the skeleton paths descriptor [30]. They call
the junction points and end points of the skeleton graph critical points. They
merge junction nodes based on the paths from the junction nodes to the end
nodes. If the sum of path distances of two nodes normalised by the number
of end nodes of the graph is below a set threshold the two nodes are merged.
They achieve slightly better results than Bai and Latecki [26], and state, that
the method is efficient even in the presence of articulation as well as partial and
merged shapes. The line of work summarized in this paragraph is mostly built
on the skeleton pruning algorithm based on DCE proposed by Bai et al.[12].

To our knowledge, there is no work on petroglyphs that utilizes skeletons or
skeletal graphs. We aim at investigating the skeletal graph for petroglyph simi-
larity modeling. In our approach, we use the the promising algorithm by Bai et
al. [12] for skeletonisation and skeleton pruning. To investigate the distinctive-
ness of skeletal graphs, we model petroglyph similarity as graph similarity. In
the following, we summarize works that use graph matching to model shape sim-
ilarity and popular graph matching approaches. There are numerous approaches
in shape matching that utilize graphs. Comparable to our approach are meth-
ods, that model shape similarity as similarity of the skeletal graph. Klein et
al. use tree edit distance to match shapes described by their shock graphs [31].
Di Ruberto uses attributed skeletal graphs to model shape similarity [32]. Aslan
skeletal graphs are matched with tree edit distance [23][24]. For our material (see
Section 3.1), tree matching is not sufficient, as the skeletal graphs may contain
cycles. Hence, we have to use graph matching. There is a long line of work in
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graph matching. A recent volume of workshop proceedings edited by Kropatsch
et al. includes papers on many aspects of graph-based representations in pattern
recognition [33].

Fig. 2. This figure shows examples of the petroglyph dataset that we investigate in
this paper. Each column contains examples of one class. We observe, that some of the
classes have high intra-class variance of shape. The petroglyphs are from various rocks
in Valcamonica. c©CCSP - Centro Camuno di Studi Preistorici and Alberto Marretta,
used with permission

A popular and intuitive similarity measure for a pair of graphs A and B is the
graph edit distance (GED). GED defines similarity of two graphs as the minimum
number of edit operations (remove node, add node, remove edge, add edge) that
are needed to transform graph A to graph B. The computation of the graph edit
distance is NP-hard [34]. This problem is addressed in several ways. There are
approximations for the GED, e.g. the widely used Hungarian algorithm, or A*
beam search. Another way is to use graph spectra (e.g. [35]) or to embed node
and edge attributes of graphs in vector spaces and subsequently use standard
similarity measures and machine learning methods to match similarity (e.g. [36]
or [37]).

3 Dataset and Approach

3.1 Benchmark Dataset

Manual tracing of petroglyphs on transparent material is the standard docu-
mentation technique for pecked rock art. See Figure 1 for a part of a tracing of
a rock panel. To obtain such a tracing, the transparent material is placed on the
rock panel and each peck mark is traced. We have access to digitized versions
of numerous sheets. For this paper, we use a dataset of one hundred tracings of
individual petroglyphs in ten classes. Figure 2 shows examples of our material.5

Note the high intra-class variability not only in terms of affine transformations
and articulations but also in general differences of the shapes in a class. Some
classes are perceptually very close, e.g. classes two and three.

5 The full dataset is available at http://ment.org/VISART14.
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Fig. 3. This figure shows petroglyph tracings (column 1), pre-processed shapes (column
2), extracted skeletons (column 3) and the derived graphs with a pruning threshold
of 2, 10 and 30px (columns 4-6). We observe, that the employed skeletonisation algo-
rithm fails to extract details in some cases (heads in rows 1 and 4), while in other cases
small details are covered well. Furthermore, we observe, that a high pruning thresh-
old removes skeletal noise (rows 1, 2, 4, 6, 9 and 10), but may also discard relevant
topological information (row 5)
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3.2 Overview of our Approach

The literature review suggests, that a combination of contour-based and skeletal
descriptors should yield optimum results. The existing petroglyph shape retrieval
systems utilize region-based features [3][4] as well as contour-based features [5].
These methods are the baseline reference methods we compare our approach
with. We concentrate on the investigation of skeletal features for the petroglyph
shape recognition problem, because the petroglyph shapes are intuitively al-
ready skeletal shapes. Furthermore, we want to use the skeletons as basis for
part-based matching in future. We propose to model similarity of petroglyphs as
a skeletal graph matching problem. We derive the graphs from the skeletons of
the petroglyph shapes. We use each end point and each junction point of a given
petroglyph skeleton as nodes for our graph, and the skeleton branches connecting
these points as edges. See Figure 3 for exemplary skeletons and derived graphs.
We utilize the skeletal graph as descriptor that is invariant to affine transfor-
mations as well as articulations. Hence, we discard all spatial information, as
we are only interested in topological information. We match the resulting undi-
rected graphs following two strategies. First, we utilize the graph edit distance
(GED) as pairwise similarity measure, and second, we use graph embedding
(GE) to create a feature vector for each graph and match these feature vectors.
We embed the graphs in feature vectors of a normed length by extracting several
graph properties (see Table 1), and calculate pairwise distances with Euclidean
distance. We classify using a k-NN classifier with an extension for intermediate
descriptor fusion.

3.3 Descriptors

We compare the distinctiveness of contour-based as well as region-based shape
descriptors with the distinctiveness of undirected skeletal graphs for the petro-
glyph classification problem. As baseline methods, we utilize a) Shape Context
(SC) [19], which has been used by Deufemia et al. for petroglyph classification
[5], b) Inner Distance Shape Context (IDSC) [25], as well as c) General Hough
Transform (GHT) proposed by Zhu et al. for petroglyph classification [3].6 Our
proposed petrogylph descriptor makes use of the skeletal graphs in two ways.
First, we use the graphs directly as descriptors and measure the similarity with
GED. We employ the A* algorithm with beam search and the Hungarian algo-
rithm. Both variants tolerate cycles in the graphs.7 Second, we utilize topology
features of the undirected graphs for GE.8 Please refer to Table 1 for the list
of selected features for petroglyph description. We evaluate the distinctiveness

6 For all three descriptors, implementations have been kindly provided by the respec-
tive authors.

7 We use the implementation in the Graph Matching Framework kindly provided by
Kaspar Riesen [38].

8 We utilize the MIT strategic engineering tools for net-
work analysis kindly provided by Bounova and de Weck [39]:
http://strategic.mit.edu/downloads.php?page=matlab networks.
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of single topology features and of combinations of topology features. In order
to be able to use skeletonisation and contour-based descriptors, we need to pre-
process our material to achieve continuous boundaries. We use standard filters
and morphological operations for this purpose. The resulting shape images are
the input for SC, IDSC as well as for the skeletonisation for which we use the
method by Bai et al. [12].9 We normalize the width of the input petroglyph to
500px and prune the skeletons by joining nodes which have a spatial distance
smaller than a threshold. GHT is computed on the original petroglyph images.10

Table 1. Topology based features extracted from the skeletal graphs. Each feature is
a description of the whole graph. Please refer to [39] for more details

id Feature Description

1 numNodes Number of nodes
2 numEdges Number of edges
3 numCycles Number of independent cycles, also known as the cyclo-

matic number of a graph
4 linkDensity Link density, i.e. ratio of existing links to maximum pos-

sible links
5 avgDegree Average number of links over all nodes
6 numLeafs Number of leafs, i.e. number of nodes with only one link
7 - 11 histDegrees 5 bin histogram of node degrees, i.e. counts of all nodes

with 1,2...5 links. The maximum occurring degree in our
dataset is 5

12 sMetric Sum of degree products across all edges, i.e. for each edge,
multiply the degrees of the two nodes connected by the
edge and finally sum up the products

13 graphEnergy Sum of the absolute values of real components of the
eigenvalues

14 avgNeighDegree Average of the average neighboring degrees of all nodes
15 avgCloseness Average of closeness over all nodes
16 pearson Pearson coefficient for the degree sequence of all edges of

the graph
17 richClub Rich club metric for all nodes with a degree larger than

1
18 algebConnect Algebraic connectivity, i.e. the second smallest eigenvalue

of the Laplacian
19 diameter The longest shortest path between any two nodes in the

graph
20 avgPathlength Average shortest path
21 graphRadius Minimum vertex eccentricity

9 We thank Bai et al. for providing the implementation.
10 We use resolutions of 10x10px, 20x20px and 30x30px. We report on the best per-

forming resolution 10x10px.
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3.4 Descriptor Fusion and Classification

Additionally to the performance of individual descriptors, we evaluate the per-
formance of descriptor combinations. For SC, IDSC, GHT and GED we compute
pairwise distances. For the feature vectors we obtain by GE, we calculate pair-
wise Euclidean distances. The combination of descriptors via the combination
(i.e. unweighted summation) of distance matrices would require a normalization
in all utilized feature spaces, which could only be provided by heuristically deter-
mined thresholds for the maximum dissimilarity that can occur for one specific
descriptor. We want to avoid this step, and aim at preserving complementary
distinctiveness as far as possible in the classification process. Instead of merg-
ing the similarity matrices, we employ single k-NN classifiers (k=5) for each
individual feature. A straightforward approach would be to combine the classi-
fication results of all classifiers by majority voting. To obtain a richer and more
expressive basis for making a decision, we refrain from this simple combination
of classification results. Instead, we fuse the classifiers at an intermediate step.
We use the class labels of the five nearest neighbors of each descriptor and con-
catenate these to a set of nearest neighbors which contains 5n class labels, with
n being the number of descriptors combined. Subsequently, we classify according
to the conventional rule of k-NN with a majority vote. This incorporates more
information than a voting based on the classification results, as we implicitly
include the probability of the classification result in form of the number of class
members among the nearest neighbors. We validate our results of single descrip-
tors as well as fused descriptors by leave-one-out-cross-validation (LOOCV). We
employ accuracy as quality measure, i.e. the ratio of the number of correctly
classified petroglyphs to the total number of classified petroglyphs.

4 Experimental Results

4.1 Graph Matching

Table 2 shows the results of GED employed on the unweighted undirected skeletal
graphs. The maximum accuracy is 57%. Both employed methods achieve this
result at a pruning threshold of 10px. We observe, that the results of both
methods tend to decrease with an increasing pruning threshold larger than 10px.
We assume, that the distinctiveness of the skeletal graphs first increases, as
skeletal noise is pruned, and then decreases after a maximum of 10px as more and
more topological distinctiveness is removed in the pruning process (see Figure
3). Furthermore, we observe, that for higher pruning thresholds, A* beam search
outperforms the Hungarian algorithm.

Table 3 summarizes the results of the evaluation of single topological features
of GE. We observe, that feature 13 (graph energy) yields the best result with
47% accuracy given a pruning threshold of 10px. We achieve also the second
and the third best results with a pruning threshold of 10px. This confirms the
GED results (see Table 2), where a pruning threshold of 10px delivers the best
results as well. Furthermore, we observe, that features 8,10 and 11 (bins 2,4
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Table 2. Classification accuracy of GED in percent. We use LOOCV-validated 5-NN
classification. The maximum number of open paths for the A* beam approximation is
6000

Pruning threshold
2 10 15 20 25 30

Hungarian 52 57 57 30 39 37
A* beam 51 57 49 47 47 47

and 5 of the degree histogram) perform around random (10%). We assume that
this is due to the fact, that most graph nodes that are not leafs seem to be 3-
connected (see Figure 3). Hence, the counts of 2, 4 and 5-connected nodes have
weak discriminative capabilities.

Table 3. Classification accuracy (in percent) of GE utilizing single scalar topological
features. We use LOOCV-validated 5-NN classification. p denotes the size of the prun-
ing threshold. The three best values are emphasized. Please refer to Table 1 for the
descriptions corresponding to the feature ids

Feature id
p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Avg.

2 25 21 14 35 27 40 40 10 33 10 10 22 25 21 30 23 35 30 27 29 14 25
10 37 44 14 29 31 40 40 9 25 7 10 33 47 23 43 23 29 32 25 31 20 28
15 35 25 17 38 33 37 37 5 21 7 10 30 37 16 30 22 38 30 23 39 23 26
20 31 28 18 31 37 21 21 8 16 10 10 35 35 15 33 26 31 33 29 37 21 25
25 33 32 20 37 39 25 25 12 14 10 10 25 39 13 37 17 37 37 26 33 29 26
30 27 36 13 28 35 23 23 13 8 10 10 33 27 9 36 22 28 34 29 26 28 24

Avg. 31 31 16 33 34 31 31 10 20 9 10 30 35 16 35 22 33 33 27 33 23

Table 4 reports the GE performance of the best feature combination of each
dimension from 1 to 10. We employ brute-force feature selection for each number
of feature dimensions, i.e. we evaluate all possible combinations for 1 to 10 out
of the 21 single features (see Table 1). We observe, that feature combination
strongly improves results. The maximum accuracy is 57%, as it is the case with
GED as well.

4.2 Comparison with Baseline Descriptors and Descriptor Fusion

Table 5 contains the results of shape descriptors with which we compare our
skeletal graph approach as well as combinations thereof. We observe, that SC
and IDSC perform better than GE when employed as single descriptors. GE
clearly outperforms the dedicated petroglyph descriptor GHT of [3]. Descriptor
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Table 4. Classification accuracy (in percent) of GE using combinations of 1 to 10 single
topology features that perform best for each dimension. We use LOOCV-validated 5-
NN classification with brute-force feature selection. The pruning threshold is 10px. The
best values are emphasized. Please refer to Table 1 for the descriptions corresponding
to the feature ids

Feature ids Accuracy

13 47
2, 15 54

4, 6, 18 56
6, 7, 18, 20 57

6, 7, 15, 18, 20 57
4, 6, 7, 15, 18, 20 56

1, 2, 4, 6, 7, 15, 17 55
1, 2, 4, 6, 7, 13, 15, 17 55

1, 2, 4, 6, 7, 14, 15, 17, 20 53
1, 2, 4, 6, 7, 13, 14, 15, 17, 20 53

Table 5. Classification accuracy (in percent) of GE, SC, IDSC and GHT and combi-
nations thereof. We use LOOCV-validated 5-NN classification for single shape features
and the classifier fusion method described in Section 3.4

Descriptor Single Fused

GE x x x x x x x x
IDSC x x x x x x x x
SC x x x x x x x x
GHT x x x x x x x x

Accuracy 57 81 82 39 80 78 54 86 84 83 84 81 86 81 88

Fig. 4. This figure shows a sample which is misclassified with GED and GHT. The
query image is on the left, and the five nearest neighbors on the right. The first two
rows show the result for GED and the utilized graphs. The third row shows the result
for GHT
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fusion generally improves results. The fusion of two or three shape descriptors
improves the results slightly. The fusion of all four descriptors improves the
results from 82% for the best single descriptor to 88%. This demonstrates, that
the descriptors contain complementary information that is well preserved by
using the proposed k-NN fusion method.

To discuss the limitations of our approach and the weak performance of GHT
on our dataset compared to the datasets employed by Zhu et al. [3], we present
example query petroglyphs and their nearest neighbors. Figure 4 shows a query
petroglyph, that is misclassified by GED as well as by GHT. We observe, that
the skeletal graph of the query antrophomorph figure has a topology which is
similar to the topology of a cross. Hence, the five nearest neighbors are crosses.
The nearest neighbors computed by GHT also fail to determine the correct class
for the query petroglyph. We observe, that the spatial distribution of the pixels
in the query image is comparable to the nearest neighbors. Figure 5 shows a
query petroglyph, that is correctly classified by GE and misclassified by GHT.
We observe, that in the case of GE, the four nearest neighbors are topologically
very close to the query graph. The fifth neighbor is different. But, we have to take
into account, that GE matches with a set of features, that cannot necessarily be
understood intuitively (see Table 4). The GHT nearest neighbors show compa-
rable pixel distributions. We assume, that the less competitive performance of
GHT on our dataset is related to the fact, that the test datasets used by Zhu et
al. are manual transcriptions of petroglyph skeletons (or sometimes outlines, see
[3] p95) which leads to simpler shapes than the detailed tracings of peck marks
in our material.

Fig. 5. This figure shows a sample which is correctly classified with GE and misclassi-
fied with GHT. The query image is on the left, and the five nearest neighbors on the
right. The first two rows show the result for GE and the utilized graphs. The third row
shows the result for GHT
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5 Conclusions

We present a novel petroglyph descriptor based on the skeletal graph topology
and propose matching with graph edit distance (GED) and graph embedding
(GE). For GE, we propose 21 different scalar topological features. We evaluate
the descriptor and the matching on a petroglyph dataset containing 10 classes
with 10 exemplars and compare the performance with other shape descriptors
used in petroglyph classification.

Matching of the skeletal graphs with GE and with GED delivers comparable
results. Both matching methods achieve 57% accuracy. GED is of high com-
putational complexity, whereas GE has low computational demand due to low
feature vector dimensionality. The two best performing combinations of topol-
ogy features have only 4 and 5 feature dimensions. The contour-based features
SC and IDSC outperform the region-based GHT and the skeletal graph-based
GE and GED. GE and GED outperform the region-based GHT. The proposed
descriptor fusion clearly improves results. In 5 of 7 descriptor combinations the
usage of our descriptor improves results (see Table 5). The combination of our
graph-based petroglyph descriptor with other descriptors yields a classification
performance of 88% which is not achieved without the proposed skeletal descrip-
tor. This shows that the skeletal features represent information not captured by
the contour-based features and the region-based features. We conclude that de-
scriptors derived from skeletons are valuable for petroglyph classification.

Future work will include improvement of our petroglyph descriptor based on
the skeletal graph in two ways. First, we aim at improving pre-processing of
the shapes as well as skeletonisation. Second, we will investigate the suitability
of spatial features. In this paper, we investigated topological information of the
skeletal graph, which is an highly invariant abstraction of the skeleton. In future,
we will investigate, whether spatial relations of graph parts contain valuable
information for our task, because our material has already undergone one step
of abstraction by the artists, who created the petroglyphs. Finally, we will make
use of our novel petroglyph shape descriptor in the task it was designed for and
which it enables: part-based matching.
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