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Abstract. We present a fully automatic approach to construct a large-scale, high-
precision dataset from noisy web images. Within the entire pipeline, we focus on
generating high quality seed images for subsequent dataset growing. High quality
seeds are essential as we revealed, but they have received relatively less attention
in previous works with respect to how to automatically generate them. In this
work, we propose a density score based on rank-order distance to identify positive
seed images. The basic idea is images relevant to a concept typically are tightly
clustered, while the outliers are widely scattered. Through adaptive thresholding,
we guarantee the selected seeds as numerous and accurate as possible. Starting
with the high quality seeds, we grow a high quality dataset by dividing seeds and
conducting iterative negative and positive mining. Our system can automatically
collect thousands of images for one concept/class, with a precision rate of 95%
or more. Comparisons with recent state-of-the-arts also demonstrate our method’s
superior performance.

1 Introduction

High quality datasets (e.g. LabelMe [15] and ImageNet [7]) play vital roles in the tasks
of computer vision and push relevant researches forward [12]. However extensive hu-
man effort is required in order to label tens of millions of images, and existing datasets
can not cover all tasks or user specific classes such as “wearing glasses”. In this context,
automatic dataset construction has emerged: given noisy images crawled from search
engines, the images which belong to the query concept/class such as “waterfall”, are
labeled as positive samples (the rest are negative outliers/distractors) in un- or semi-
supervised way.

The pipeline of existing methods [10,16,14,13,5,3] for automatic dataset construc-
tion can be summarized into two steps: generating a group of labeled images i.e. seed
images or seeds; and growing the dataset from the starting seeds by iterative “self train-
ing”. But previous works mainly focus on the second step, paying relative less attention
to the first step – the seeds are either labeled by human [10,14,13,5] (high cost) or
labeled according to top-ranked images [14,13] or noisy surrounding text [1,16] (low
quality).

In this work, we study the impacts of the first step, i.e., generating seeds, on au-
tomatic dataset construction. We find that high quality seeds are critical to achieving
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high recall and precision for the constructed dataset (see Section 2). With this mind,
we propose a novel and fully automatic approach to generate high quality seeds. The
basic observation/assumption underline of our approach is that the positive samples are
densely clustered while the negative outliers are widely scattered. In this context, we
can identify the images with high density as positive seeds.

To realize this basic idea, we need to handle the heterogeneous problem: the L2
distance is incomparable across different concepts. For example, the average distance
between “human” images is usually larger than the average distance between “water-
fall” images. We handle this problem by transforming the L2 distance to rank-order
distance [19], which is more robust to the heterogeneous problem. Based on the rank-
order distance, we define the density of an image as the number of neighbors within a
certain distance, and choose images with high densities above a certain threshold as the
seeds. For various concepts, we adaptively set the thresholds, because the proportions of
the positive samples are concept-dependent. The threshold is automatically determined
by balancing the following considerations: the average density of selected seeds should
be high, while the selected seeds should be similar to each other but dissimilar from the
outliers.

We grow the dataset from the seeds using iterative negative mining [6,9] and positive
mining [14]. We develop seed dividing as a preprocessing step in the creation of the
dataset to alleviate the multi-modal problem in negative and positive mining. We exploit
k-means to divide the seeds into multiple groups and train separated classifiers on each
of them. Substantial improvements are observed in the multi-modal case.

We apply the features obtained by deep learning [12,8,18] in the task of automatic
dataset construction. As deep learning features are very capable of capturing the se-
mantic meaning of images, we expect substantial improvement and revisit the task of
automatic dataset construction.

2 Seeds Quality Matters

Intuitively, the larger the amount and the higher the precision of seeds, the better the
quality of the constructed dataset. We measure the seeds’ quality using seeds ratio and
seeds precision. Seeds ratio measures the amount of seeds relative to the total number
of the crawled images. Seeds precision measures the percentage of the true positive
relative to the total number of selected seeds.

To quantitatively study the dataset quality as a function of seeds quality, we artifi-
cially build a dataset of “crawled” images: the positive samples are from one class of
ImageNet and the negative outliers are randomly crawled web images. In this way, we
quantitatively vary the seeds ratio and seeds precision, and study their influences on the
quality of the constructed dataset.

We find high seeds precision is critical to dataset quality (Fig. 1(a)). For example,
the recall and precision are 91% and 95% given a high seeds precision of 100%, but
the recall and precision drop dramatically to 74% and 91% when the seeds precision
decreases to 80%. We also find that a certain seeds ratio (e.g. 20%) is necessary for
good recall (Fig. 1(b)).

In this context, we need adequate and accurate seeds to benefit the final constructed
dataset. We propose our approach with this factor under consideration.
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Fig. 1. The impact of seeds quality on the constructed dataset. (a) seeds precision vs. dataset
quality. (b) seeds ratio vs. dataset quality. In (a), seeds ratio is fixed to 15%. In (b), seeds precision
is fixed to 100%. One concept is taken as a representative example in this figure. Similar patterns
are also observed in other concepts.

3 Our Approach

To automatically construct a dataset, we firstly crawl large-scale noisy images from
web, and generate clean seed images from the crawled images. Then we grow the
dataset starting from the seeds. We will detail these three steps in this section.

3.1 Image Crawling

Herein we describe how we construct the initial set containing tens of thousands im-
ages. Since Google and Bing can only return 1000 results at most for one query, which
is far from what we need, we enlarge the number of crawled images in two ways: (i)
We exploit searching filters provided by search engines. For example, we vary the im-
age layout (square, wide or tall) and size (small, medium or large), and combine these
filters to crawl more images. The top 300 results are downloaded in each combination.
Then about 2000–4000 images are crawled for one text query. (ii) We utilize automatic
query expansion [2]. For example, given a target concept such as “waterfall”, we ex-
pand 10–20 relevant queries such as “cascading waterfall”, “waterfall in Europe” and
so on. Then we use the expanded queries to crawl more images.

After downloading, we remove small images (width or height < 160 px) and dupli-
cates. The remaining images form the initial set for subsequent seeds generating and
dataset growing.

3.2 Seeds Generating

We exploit the topological structure of crawled images to generate seeds un-supervi
sedly. According to the topological structure, most positive images are densely clus-
tered while the outliers are widely scattered. In other words, images in denser areas are
more likely to be seeds. Therefore we can rank the crawled images by a certain density
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Fig. 2. (a) The L2 distances between the positive image and its nearest outlier are 1.1 and 1.7 for
concept “waterfall” and “wearing glasses” respectively. Distance values are shown near images.
Note that for concept “wearing glasses”, there exists some positive neighbors with L2 distances
larger than 1.1. (b) The rank-order distances between images in a dense area are much smaller.

measurement and select the top-ranked samples as the seeds. To translate this basic idea
into a good algorithm, we need to deal with two issues.

Firstly, it is not effective to directly measure density in the Euclid space, because of
the heterogenous problem: the L2 distance is incomparable across different concepts.
As shown in Fig. 2(a), for the concept “waterfall”, the L2 distance between a positive
image and its nearest outlier is 1.1; while this value is 1.7 for concept “wearing glasses”.
These distance values are measured by deep learning features we extract. This implies
that, for a same distance, a sample could be within the concept “wearing glasses”, but
beyond the concept “waterfall”. This makes it hard to define a good density measure-
ment in Euclid space.

Secondly, it is clear that samples with a very high density are positive, and samples
with a very small density are negative. But it is not easy to draw a line in the middle to
decide how many top images are selected: selecting too many images leads to low seeds
precision, while selecting too few leads to low seeds ratio. In addition, the proportion
of positive images differs for different concepts, which requires adaptive threshold.

Rank-Order Distance. We use rank-order distance [19] to address the heterogenous
problem. We denote the initial set as X = {xi : 1 ≤ i ≤ N}. Rank-order distance is
defined as:
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Fig. 3. Images and their density scores (shown below images)

d(xi, xj) =
D(i, j) +D(j, i)

min(Oi(j), Oj(i))
, (1)

D(i, j) =

Oi(j)∑

k=0

Oj(fi(k)), 1 ≤ i, j ≤ N,

where Oi is denoted as an order list ranked by the L2 distance from xi to other images.
Oi(j) is the order of xj in Oi. fi(k) returns the kth image in Oi. (see [19] for details)

Rank-order distance is used here because it is defined on the structure of neighbor-
hood. If two images have similar neighbors, then the distance between the two images
is small, otherwise the distance is large. Because of the topological structures of differ-
ent concepts are similar, rank-order distance is comparable across different concepts.
Moreover, rank-order distance is more robust to outliers. The distances between im-
ages in a dense area are around 100 times smaller than those between outliers, but this
difference is insignificant when measured in Euclid space, as illustrated in Fig. 2(b).

Density Score. With the rank-order distance, we define the measurement of density
as the number of neighbors within a certain distance (d = 15 in our implementation).
Formally, the neighborhood graph on X is defined as:

h(xi, xj) =

{
1, d(xi, xj) < d

0, d(xi, xj) > d
(2)

and the density score of x is v(x) =
∑

i=1...N h(xi, x).
To understand how well the density score works, we visualize the crawled images

under the concept “waterfall” in Fig. 3, along with their density scores. We find that for
a high density (around 4,000), all images belong to “waterfall”; for a medium density
(around 1,000), most images belong to “waterfall”, and the rest belong to relevant con-
cepts such as “fast-flow river” or “small waterfall”; for a small density (about 0), most
images are irrelevant. It is interesting to mention that the image with a 107 density score
(in the third row, third from left) says that “a long ponytail” looks similar to “waterfall”.
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Adaptively Thresholding. Denote the set of selected seeds as St = {x : v(x) ≥ t},
and outliers St = X − St. For various concepts, we propose choosing the optimal
threshold t∗ by maximizing the following objective function:

t∗ = argmax
t

Eu + Ei − Ee (3)

where: Eu =
1

|St|
∑

x∈St

v(x),

Ei = A(St, St),

Ee =
1

2
(A(St, St) +A(St, St)).

Here A(St, Rt) is the similarity between two sets, which is defined hierarchically: first
we define the similarity between two samples x and y as the amount of their com-
mon neighbors, i.e., h(x, :)h(y, :)T ; then we define the similarity between a sample
and a set as the maximum similarity between this sample and the samples in the set,
i.e., g(x,Rt) = maxy∈Rt,y �=x h(x, :)h(y, :)

T ; finally we define the similarity between
two sets as the average similarity between the samples of one set to the other set, i.e.,
A(St, Rt) =

1
|St|

∑
x∈St

g(x,Rt).
So in Equation(3), the three terms Eu, Ei, Ee mean the following:

(1) Eu: the unary term. It equals to the average density of all selected seeds.
(2) Ei: the intra-seeds similarity term. It is the self similarities of the set of seeds.
(3) Ee: the extra-seeds similarity term. It is the cross similarity between the set of seeds

and the set of outliers.

As there is only one unknown variable in the optimization, we use binary search to
efficiently find the optimal threshold t∗ and select St∗ as seeds.

3.3 Dataset Growing

Given the generated seeds, we can grow the dataset in an iterative self-training way:
(i) train a classifier using the seeds as the positive and an irrelevant reference set as
the negative; (ii) apply the classifier to all crawled images; (iii) add images with high
scores and remove those with low scores; (iv) iterate. Here an irrelevant reference set is
introduced to anchor the iterative training and screen out outliers.

With this in mind, in order to reduce training cost, we first do negative mining: we
train a linear svm classifier on the positive seeds and the negative reference set; apply
the classifier to the negative set only; the hard negative samples are selected to form
a new negative set; iterate. By doing this, we obtain hard negative samples, which are
more effective in identifying the boundary of positive samples. We next do positive
mining. This procedure is similar to the aforementioned self-training process, expect
that the negative samples are not the whole reference set, but the hard negative samples.

In our implementation, we use NUS-WIDE [4] as the reference set. This dataset con-
tains about 250K images crawled from Flicker, and we find 100K of these are enough
for good performance. Usually 2%∼6% (i.e. 2K∼6K) images are selected as hard neg-
ative samples in negative mining.
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Fig. 4. Five groups of seeds after seeds dividing

Seeds Dividing. Generally, images under one concept may be multi-modal due to dif-
ferent scenes, viewpoints, illumination and so on. This fact will degrade the negative
and positive mining because linear svm does not handle multi-modal problem so well.
Therefore we propose dividing the seeds into multiple groups as a pre-processing step
to alleviate the multi-modal problem. Given the divided groups, we train classifiers on
each group separately.

We use k-means to divide the seeds into m groups (m = 5 in our experiments as
a tradeoff between cost and performance). Take “waterfall” as an example again. In
Fig. 4, seeds of “waterfall” are divided into five groups. Between different groups, there
are apparent appearance gaps/differences, but within the same group the appearance
variations are relatively smaller. Intuitively, we can tell the proposed seed dividing sim-
plifies the classification task. With simpler tasks, linear svm can fit better and generalize
better, resulting in better performance.

4 Experiments

In this section, we compare the proposed method with recently state-of-the-arts and
demonstrate our performance in both quantitative and qualitative ways. We also experi-
mentally investigate different components of our method to reveal more understandings.

Deep Learning Features. Recently, deep learning features trained on ImageNet
[7] have been successfully applied in many vision tasks such as image classification
[12,8,18] and object detection [17]. We first apply deep learning [12,8,18] features to
the task of automatic dataset construction. Similar to [12], we train a seven-layer con-
volutional neural network on ImageNet 2010 and use it to extract features from images
– 2048-dimensional features are extracted from the first fully-connected layer.

Evaluation Datasets. We use two datasets to quantitatively compare and analyze our
method. The first one is Web-23 [14], containing 23 concepts with positive images
and outliers. We also construct a synthetic dataset: we choose 16 concepts and gather
corresponding images from ImageNet as the positive samples (see Table 1), and use
randomly crawled web images as the negative outliers. Note these subsets are excluded
from the training of the deep neural network. Each concept in the synthetic dataset is
formed by mixing positive and negative samples ar a ratio of 1:1.
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Table 1. The 16 concepts in the synthetic dataset and the number of positive images within

concept bird tower building window bus car car mirror wheel fireplace
#images 7196 9439 7799 11037 7046 3288 1981 1359
concept bread dish hamburger pizza porridge corn garden tree
#images 6850 10216 2473 2337 8879 1157 2388 2081

4.1 Comparison Experiments

Seeds Comparison. We conduct experiments to compare different seeds generating
methods and their impacts on the constructed dataset. We compare our method with the
recent state-of-the-art [3] on the synthetic dataset. [3] uses exemplar-LDA [11] classi-
fiers to vote the seeds, on which multiple classifiers are trained to find more positive
samples. We call this method ELDA for simplicity.

In our method, a density score based on rank-order distance is used for identifying
seeds. A more straight forward approach is to define the density score based on L2 dis-
tance. We use this naive approach as a baseline. We also compare with ELDA which is
a highly competitive method. For various seeds ratios (5%, 10% and 20%), we compare
the seeds precision of different methods. Average results of 16 concepts are reported in
Table 2, from which we can tell: (i) our method is significantly better than the baseline
approach, because rank-order distance is more robust than L2 distance; (ii) compared to
ELDA, the precision of our method is still 6%∼9% higher, see visualized comparison
in Fig. 5. We also apply our dataset growing method to both our and ELDA’s seeds to
isolate the quality of seeds for study. As shown in Table 2, our recall is 5%∼7% higher
than ELDA while the precision of both methods are comparable.

If adaptive thresholding is applied, we will have 98% seeds precision and 18% seeds
recall. This result presents good balance between seeds ratio and seeds precision. Such
a good balance translates into high dataset quality: 74.2% recall and 98.3% precision,
better than any pre-defined threshold (i.e. selecting top 5%, 10%, and 20%).

To further investigate the impact of seeds on constructed datasets, we splice seeds
generating and dataset growing in different methods. As shown in Table. 3, by re-
placing the seeds of ELDA with ours, recall/precision increase from 70.3%/91.9% to
72.4%/97.7%. If we replace the seeds in our method with ELDA’s, recall/precision drop
from 74.2%/98.3% to 72.1%/93.8%. These results imply that: (i) better seeds lead to
better system performance; (ii)our seeds generalize well to ELDA’s dataset growing
process.

Table 2. Seeds comparison. The datasets are constructed by corresponding seeds and our dataset
growing method.

Seeds Ratio
Seeds Precision

Recall/Precision
of constructed dataset

L2 ELDA [3] Ours ELDA [3] Ours
5% 75.7 90.9 99.7 52.0/95.4 59.0/98.5

10% 72.6 89.6 98.9 61.8/94.0 68.8/96.6
20% 70.2 88.0 94.2 73.3/93.8 78.2/92.2
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oursELDA

Fig. 5. Seeds comparison visualization. We first generate image rank lists for our and ELDA
method. Then we randomly sample images at the 20% quantile position of the rank lists.

System Comparison. We conduct system comparison with OPTIMOL([14]) and
ELDA([3]). Results on Web-23 are shown in Fig. 6. The values of OPTIMOL are from
[14,13], and the seeds’ amount K in ELDA is set to be the same with ours. From Fig. 6,
it can be seen that our method collects more images than the other methods, with a
higher level of precision.

We also compare with ELDA on the synthetic dataset. In this experiment, we manu-
ally set the K so that the corresponding seeds ratio are 5%, 10% and 20% respectively.
The comparison results are shown in Table 4 , from which we can see that: (i) our
method consistently outperforms ELDA, no matter measured by recall or precision; (ii)
larger seeds ratios generally lead to higher recall and lower precision.

4.2 Components Evaluation

Here we study the contributions of different components to our entire system. Basically
our system contains three components: seeds generating, negative and positive mining
and seeds dividing. We break down those components and design three experiments to
analyze their contributions to the entire system.

– Seeds: only seeds generating, with dataset growing.
– Seeds+NegPosMining: negative and positive mining without seeds dividing.
– Seeds+Divide+NegPosMining: our full system, including all components.

Table 3. Seeds’ impact on constructed datasets. The amount of ELDA’s seeds is set to be the
same with ours.

Seeds Generating Dataset Growing Recall Precision

Ours Ours 74.2 98.3

Ours ELDA’s 72.4 97.7

ELDA’s Ours 72.1 93.8

ELDA’s ELDA’s 70.3 91.9



396 Y. Xia et al.

(a) (b)

0

100

200

300

400

500

600

OPTIMOL ELDA Ours

#
 o

f 
co

ll
ec

te
d

 i
m

ag
es

50

60

70

80

90

100

OPTIMOL ELDA Ours

P
re

ci
si

o
n

 

Fig. 6. System comparison on Web-23 dataset.

From the results in Fig. 7, we can see that: First, the recall of Seeds is around
20%∼40%. This is fairly good. Considering the typical amount of crawled images is
more than 10K per concept, such recall can offer us over 2K images with very high pre-
cision (95% or more). Second, the negative and positive mining effectively improve the
recall, which is around 50%∼80% after mining. Third, the system is further improved
by seeds dividing, which helps the final recall achieve 70%∼90%. This means that we
generally can collect more than 7K images for one concept.

We also observe that: for some concepts, like “bird” and “tower”, recalls of our sys-
tem are much higher than that obtained without seed dividing. This is because images
under these concepts have diverse visual appearances. This indicates that seeds dividing
is essential to our dataset construction system.

Table 4. System comparison on the synthetic dataset

concept
Ours

recall/precision
ELDA’s recall/precision

5% seeds 10% seeds 20% seeds
bird 70.0/98.3 21.2/90.8 32.1/86.3 53.7/82.3
tower 69.9/95.5 22.0/89.1 33.5/85.2 56.6/83.8
building window 89.7/96.3 20.9/85.6 38.3/82.0 51.2/78.7
bus 76.4/98.6 20.9/92.5 39.1/90.2 59.4/87.3
car 82.2/98.0 16.3/93.9 29.3/91.3 56.2/89.7
car mirror 52.6/99.1 18.9/83.6 28.6/81.6 46.9/80.9
wheel 56.1/99.8 9.6/97.4 29.3/93.2 43.7/89.5
fireplace 75.1/99.4 20.2/97.2 36.8/94.9 48.1/92.6
bread 73.8/97.9 17.3/90.3 29.3/88.3 55.0/85.9
dish 70.6/98.1 20.4/92.1 36.0/90.6 59.4/88.6
hamburger 75.7/98.6 10.6/95.3 31.9/94.0 45.2/93.1
pizza 85.5/99.4 21.5/94.7 39.3/94.2 64.7/91.0
porridge 88.1/99.3 17.0/90.6 39.2/88.9 50.7/87.5
corn 65.3/99.2 8.7/98.1 20.3/93.6 37.8/90.5
garden 83.8/98.4 10.1/89.0 29.1/86.2 41.8/81.2
tree 72.9/96.7 11.1/93.2 25.2/90.9 41.1/88.8
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Fig. 7. Components Evaluation. The height of a bar stands for recall and the numbers above the
bar is precision. (best viewed in color).

4.3 Dataset Constructed by Our System

Our system has now constructed a dataset which contains 80 concepts, averaging 7K
images per concept. It takes nearly a month, and most of the time is spent on download-
ing images from Internet. The processing time for seeds generating and dataset growing

Table 5. Some concepts in our constructed dataset and corresponding statistics

concept
#images
crawled

#images
collected

precision of
collected images

#images in
ImageNet

general
concepts

bus 35232 16585 94.5 >15590
train 24485 10087 96.8 >10041
tree 39457 19885 96.0 >14433

concepts with
few images
in ImageNet

cabin 16224 6649 96.3 2546
crowd 23943 9150 99.3 1296

ferris wheel 10120 5283 98.8 1795
fried egg 8087 5104 97.5 1295

meeting room 11119 6681 98.0 1354
sculpture 37213 15732 98.0 2677

sun 24855 6816 99.3 1341
tattoo 33364 21201 97.0 1685

tree root 16554 8547 97.5 1769

concepts
not exist

in ImageNet

fly in sky 17813 5141 96.5 0
team photo 9919 4829 98.5 0

wearing glasses 15723 5082 92.4 0
waterfall 18766 9368 98.5 0

view from plane 3350 1274 98.3 0
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is just around 3 hours per concept. Exemplary images from this dataset are shown in
Fig. 8. We also present the statistics of some representative concepts in Table 5, in-
cluding image amounts and corresponding precisions. We estimate the precision from
a manually labeled subset (500 images per concept) of the entire dataset. The average
precision is 95%.

Our constructed dataset demonstrates two desired properties which could be a good
supplementary to existing large-scale datasets such as ImageNet: (i) apart from a hand-
ful of generic concepts such as “bus” and “train”, most concepts in ImageNet only
contain 1,000∼2,000 images, while our method can enlarge that amount by 5 times on
average; (ii) Although a large range of concepts has been covered by ImageNet, the un-
covered range is even larger. For example, there is no concept such as “wearing glasses”
or “view from sky” in ImageNet, but our system can automatically collect many precise
images for these concepts.

5 Conclusion and Future Work

In this work, we present a fully automatic system to construct large-scale, high-precision
dataset from noisy web images. The system can collect thousands of images for one
concept with very high precision – 95% or more. The superior performance is mainly
due to the proposed seeds generating, negative and positive mining, as well as seeds
dividing. Currently we only use visual features, and it is worth studying how to appro-
priately exploit text and web-ranking to further improve the system performance.
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