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Abstract. Most of the methods to compute optical flows are variational-
technique-based methods, which assume that image functions have
spatiotemporal continuities and appearance motions are small. In the
viewpoint of the discrete errors of spatial- and time-differentials, the ap-
propriate resolution for optical flow depends on both the resolution and
the frame rate of images since there is a problem with the accuracy of
the discrete approximations of derivatives. Therefore, for low frame-rate
images, the appropriate resolution for optical flow should be lower than
the resolution of the images. However, many traditional methods esti-
mate optical flow with the same resolution as the images. Therefore, if
the resolution of images is too high, down-sampling the images is effec-
tive for the variational-technique-based methods. In this paper, we ana-
lyze the appropriate resolutions for optical flows estimated by variational
optical-flow computations from the viewpoint of the error analysis of op-
tical flows. To analyze the appropriate resolutions, we use hierarchical
structures constructed from the multi-resolutions of images. Numerical
results show that decreasing image resolutions is effective for computing
optical flows by variational optical-flow computations in low frame-rate
sequences.

1 Introduction

In this paper, we analyze the appropriate resolutions for optical flows estimated
by variational optical-flow computations from the viewpoint of the error analysis
of optical flows. To analyze the appropriate resolutions, we use hierarchical struc-
tures constructed from the multi-resolutions of images. In the error analysis, we
measure the average spatiotemporal angle errors (ASAE) between the ground
truths of optical flows in each hierarchy of resolutions and estimated optical
flows from the corresponding hierarchy of resolutions. Since the spatiotemporal
angle error normalizes the norms of flow vectors, the effects of the decreases of
the norms by making lower resolutions. Candidates for computation methods
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are [1, 2] that both assume that optical flows are small and approximate space
derivatives from the previous and next frames.

Optical flows are appearance motions computed from image sequences and
contain some feature-quantities such as self-motions of cameras and motions of
objects. By computing optical flows from the image sequences taken by car-
mounted cameras, we can obtain information about self-motions and obstacles
[3, 4]. Furthermore, there are some researches about analyses and classifications
of the motion properties of objects by using optical flows [5]. Thus, optical flows
are widely applied to motion analyses such as motion detections and recognitions.

Optical flows are estimated under an assumption that the brightness of corre-
sponding points on image sequences does not change temporally. However, optical
flows are underspecified only by this assumption since it is an ill-posed problem. To
avoid this problem, many researchers have been proposing block-matching based
methods and variational-technique based methods [6] since 1980s. These methods
adds another assumption that optical flows are locally smoothed.

One of the advantages of variational-technique based methods is that the par-
tial differential equations (PDE) to be solved are analytically derived by defin-
ing an energy-minimization problem from some assumptions about optical flows.
Thus many researchers have been proposing various assumptions since 1980s
[6–9]. Most of these assumptions are expressed by PDE for images and optical
flows. Therefore, images and optical flows should have spatiotemporal continu-
ities naturally. Moreover, optical flows in itself are expressed by spatiotemporal
derivatives and therefore it is assumed that the flow vectors are very small.

Because the images on computers are discrete, optical flows are also discrete.
Then its physical unit is denoted as pixel/frame from the pixel of images and
frame of sequences. In the discretization of the PDE above, space- and time-
derivatives are approximated by using step sizes of pixels and frames respectively.
The frames of optical flows should correspond to the intermediate frames of two
successive frames in an image sequence. To synchronize the frames of images and
optical flows, the space derivatives of images should be approximated from the
previous and next frames of each intermediate frame.

Although image resolutions become higher and higher by the performance
upgrades of cameras, frame rates of image sequences do not upgrade so much.
This induces the image sequences with high resolutions and low frame-rates in
the viewpoint of approximations of spatiotemporal derivatives. The optical flows
computed from such image sequences have larger appearance velocities in pixel
unit than those computed from images with lower resolutions in the same scenes.
Therefore, in this case the assumption that optical flows are small is not satisfied.
Furthermore, there is a problem about the accuracy of the approximations of
space derivatives since the approximations from the previous and next frames
assumes implicitly that images does not change so much around the intermediate
frames. Thus in the case of the images that have higher resolutions and lower
frame-rates, the optical-flow computations by using PDE have less accuracy.
Therefore, from the viewpoint of spatiotemporal derivatives, we should compute
optical flows with appropriate resolutions against its frame rates.
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2 Mathematical Preliminary

2.1 Optical Flow

For a time dependent image f(x, t) defined in R
n×R+, where n is the dimension

of images, the total differentiation for time t is give as

d

dt
f = ∇f�v(x) + ∂tf (1)

where ∇ = (∂x, ∂y)
� and v(x, t) : Rn ×R+ → R

3 is an image velocity or optical
flow function on the image, and in n = 2, v(x) = (u(x), v(x))� = (ẋ, ẏ) = dx

dt .

Optical flow consistency d
dtf = 0 implies that the flow vector v of the point x is

the solution of the singular equation,

F (f,v) = ∇f�v + ∂tf = 0. (2)

To solve the eq. (2), the additional constraints are required. We generalize the
data term such as the square of eq. (2) to E1(x, t,v, f).

Equation (2) is an ill-posed problem and therefore v is underspecified. Thus
v is solved by using the energy minimization problem

min

∫∫
Ω

E1(x, t,v, f) + αE2(x, t,v)dx (3)

in variational method [6, 10]. Here, E1 is a data term and the positive constant α
is the weight coefficient of a prior term E2, which is a convex function 1 for v and
regularizes v under some assumption. Some examples of E2 are the smoothness
regularizer [6]

(∂xu)
2 + (∂yu)

2 + (∂xv)
2 + (∂yv)

2, (5)

total variation regularizer |∇u|+ |∇v|, and deformable-model regularizer u2
xx +

2u2
xy + u2

yy + v2xx + 2v2xy + v2yy, respectively. In the method [1], E1 = (F (f,v))2

and E2 is eq. (5) and then its energy functional is

min

∫∫
Ω

(F (f,v))2 + α
(
(∂xu)

2 + (∂yu)
2 + (∂xv)

2 + (∂yv)
2
)
dx. (6)

In the conventional methods expressed as eq. (3), α is a given parameter and
its appropriate value depends on images. Although, in general, the appropriate
value depends on x and t, α is a constant value in eq. (3).

The boundary condition of the optical-flow computation is the free boundary
condition

∀x ∈ ∂Ω, ∀t, ∀n ∂v

∂n
(x, t) = 0 (7)

1 A function g that satisfies

∀a,b ∈ R
2,∀k ∈ [0, 1] g(ka+ (1− k)b) ≤ kg(a) + (1− k)g(b). (4)
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that is derived from variational method. Here, n is a unit normal vector for the
image boundary ∂Ω. The meaning of this condition is that optical flow continues
smoothly beyond the image boundary.

2.2 Pyramid-Based Multiresolution

We define g(x, y) = Rkf(x, y) of image f(x, y, t) for an integer k ≥ 1, such that

Rkf(x, y) =

∫∫
R2

wk(i)wk(j)f(2
kx− i, 2ky − j)didj, (8)

for

wk(i) =

{
1
2

k
(1− |i|

2

k
), |i| ≤ 2k

0, |i| > 2k
, (9)

and then there is the relation

Rk+1f = R(Rkf). (10)

The dual operation of Rk is defined as

Ekg(x, y) = 4k
∫∫

R2

wk(i)wk(j)g(
x− i

2k
,
y − j

2k
)didj. (11)

3 Variational Problem for Adaptive Optimization

We describe about the summary of variational optical-flow computation using
the Lagrange Multiplier Method [2]. This method assumes the higher frame-rate
of image sequences. However, ordinary image sequences are not so. Therefore
we use this method to analyze the effects of resolutions of images in variational
optical-flow computation.

To generalize weight coefficient α to the function of x and t and determine
it mathematically, they define (F (f,v))2 as a constraint equation and use the
energy-minimization problem with the constraint, which is

min
v(x,t)

∫
Ω

E2(x, t,v)dx subject to (F (f,v))2 = 0. (12)

Converting this problem using the Lagrange Multiplier Method, they get the
energy-minimization problem without constraint

min
v(x)

∫
Ω

J(u, f, λ)dx, w.r.t. J(u, f, λ) = λ(x, t)(F (f,v))2 + E2(x, t,v) (13)

where λ(x, t) : Ω × R+ → R+ is the Lagrange multiplier. In the method, E2 is
eq. (5) and then its Euler-Lagrange equations are
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(F (f,v))2 = 0 (14)

λF (f,v)∇f −∇2v = 0, (15)

where, ∇2 = ∂2
x + ∂2

y is Laplacian and ∇2v = (∇2u,∇2v)�.

Tab. 1. Experimental Methodology. We use two methods that assume both spatiotem-
poral continuities to compute optical flows by variational method. We analyze the
relationship between the number of down-sampling operation R of images and the
evaluation of estimated optical flows.

weight number of R initial

Lagrange method [2] λ(x, t) 0,1,2,3,4,5 {0}
competitive [1] 1 or 0.1, ∀x,∀ t 0,1,2,3,4,5 results of previous frame

The numerical computation of the PDE above is defined as

λ(m+1) = λ(m) + τ1

(
F (f,v(m))

)2

(16)

v(m+1) = v(m)

−τ2

(
λ(m+1)F (f,v(m+1))∇f −∇2v(m)

)
, (17)

where, λ(m),v(m) is the variables at the iterative number m ≥ 0 and τ1 > 0, τ2 >
0 are small constants.

4 Experiments

4.1 Evaluations

We analyze the relation of the errors and the resolutions of images, where we use
all frames of EISATS set 2 sequence 1 and 2 [11]. Table 1 shows the experimental
methodology of it.

Defining i, j as the coordinates of square grid points on discrete images and
h as the step size between grid points, we denote vi,j as the value v(h(i, j)�, t)
at i, j and define

(i∗, j∗)� = arg max
i,j

|v(m+1)
i,j − v

(m)
i,j |. (18)

The iteration ends when the convergence condition

|v(m+1)
i∗,j∗ − v

(m)
i∗,j∗ |

v
(m+1)
i∗,j∗

< 10−5 (19)

is satisfied or m reaches 103.
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We choose the large step sizes τ1 = 103, τ2 = 1
4 of the iteration for the La-

grange method [2]. On the other hand, we choose 103 and 104 for α, and 1
4 for

the step size corresponding to τ2 for the method [1]. The initial optical flows
of both methods are {0}. After second frame for the method [1], we use the
estimated optical flows of previous frames as initial flows of next frames.

The evaluation is based on spatiotemporal angle error [12, 13]

arccos

⎛
⎝ w�

i,jv
(m)
i,j + 1√

(|wi,j |2 + 1)(|v(m)
i,j |2 + 1)

⎞
⎠ , (20)

where wi,j is the flow vector at i, j of the ground truth. Spatiotemporal angle

error is the angle between (w�,1)�

|(w�,1)| and (v(m)�,1)�

|(v(m)� ,1)| , and the errors in a region of

smooth non-zero motion are penalized less than errors in regions of zero motion.
[12]. We compute the average values at each frame. However, we do not include
the region in which the ground truth is undefined.

4.2 Results and Discussions

Figure 1 and 2 shows the computed optical flows and the evaluations of it,
respectively. From the figure 1, the result of the Lagrange method is better
than the competitive method to compute the spatial differences of appearance
motions which are induced by the leading and oncoming vehicles. From the re-
sult of down-sampling, the errors decreased when the resolutions reduced. Sim-
ilarly, in Fig. 3, the error analysis of EISATS set 2 sequence 2 shows the same
effects.

The errors from the 40th frame to the 50th frame are larger than those of other
frames. In these frames shown in Fig. 1 (f), there are much larger appearance
motions since the oncoming vehicle falls out to the image boundary. It is hard to
express such larger appearance motions even if the image resolution is decreased.
Thus there are large errors comparatively.

Figure 4 shows the comparison of the Lagrange and competitive methods. The
Lagrange method indicates the performance as much as that of the competitive
method in low-resolutions. From the results, if the appearance motions are made
small by decreasing the resolution, the Lagrangemethod satisfies the assumption.

From these resluts, R4 and R5 have lower errors than higher-resolutions,
however, the stability for time-direction is also lower. Therefore, to find an ap-
propriate resolution we have to analyze the stability of time-direction of the
errors.
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(a) image (b) motion field

(c) Lagrange (d) Kameda and Imiya [1] with α = 1

(e) Kameda and Imiya [1] with α = 0.1 (f) The 45th frame

Fig. 1. The optical flows between the 24th and 25th frames of EISTAS set 2 sequence
1. The Lagrange method is better than the competitive method to compute the spatial
differences of appearance motions which are induced by the leading and oncoming vehi-
cles. In (f), since the oncoming vehicle falls out to the image boundary, the appearance
motions are larger than the other frames.
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(b) Kameda and Imiya [1] with α = 1
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(c) Kameda and Imiya [1] with α = 0.1

Fig. 2. The spatiotemporal-angle error of
all frames of EISATS set 2 sequences 1. R*
means the number of down-sampling oper-
ator R and the error functions of those are
shown in the order corresponding to the
numbers of R. Thus the errors decreased
when the resolutions reduced.
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(b) Kameda and Imiya [1] with α = 1
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(c) Kameda and Imiya [1] with α = 0.1

Fig. 3. The spatiotemporal-angle error of
all frames of EISATS set 2 sequence 2. R*
means the number of down-sampling oper-
ator R and the error functions of those are
shown in the order corresponding to the
numbers of R. Thus the errors decreased
when the resolutions reduced.
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(a) for R4, number of operator R is 4
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(b) for R5, number of operator R is 5

Fig. 4. The comparison of the Lagrange and competitive methods in the cases of low
resolutions of EISATS set 2 sequence 1.

5 Conclusion

In this paper, we analyzed the appropriate resolutions of optical flows estimated
by variational optical-flow computations from the viewpoint of the error anal-
ysis of optical flows. To analyze appropriate resolutions, we used hierarchical
structures constructed from the multi-resolutions of images. Numerical results
show that decreasing image resolutions is effective to compute optical flows by
variational optical-flow computations in low frame-rate sequences. From the re-
sults, if the appearance motions are made small by decreasing the resolution, the
variational optical-flow computations satisfies the assumption of spatiotemporal
continuities of images and optical flows.
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