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Abstract. Vehicle identification from images has been predominantly
addressed through automatic license plate recognition (ALPR) tech-
niques which detect and recognize the characters in the plate region of
the image. We move away from traditional ALPR techniques and advo-
cate for a data-driven approach for vehicle identification. Here, given a
plate image region, the idea is to search for a near-duplicate image in an
annotated database; if found, the identity of the near-duplicate is trans-
ferred to the input region. Although this approach could be perceived
as impractical, we actually demonstrate that it is feasible with state-of-
the-art image representations, and that it presents some advantages in
terms of speed, and time-to-deploy. To overcome the issue of identifying
previously unseen identities, we propose an image simulation approach
where photo-realistic images of license plates are generated for desired
plate numbers. We demonstrate that there is no perceivable performance
difference between using synthetic and real plates. We also improve the
matching accuracy using similarity learning, which is in the spirit of
domain adaptation.

1 Introduction

This article focuses on vehicle identification from images [1–4], which finds a
variety of applications in the transportation industry. For instance, on-board
cameras in police cars and buses are employed to identify vehicles incurring
traffic violations; fixed cameras are installed as part of the traffic infrastructure
to automate payments in tolls or parkings, and cameras in portable devices and
even mobile phones allow identifying vehicles by parking enforcement staff or for
vehicle social networks1.

A vast number of off-the-shelf automatic license plate recognition (ALPR)
[3, 4, 1] tools exist which detect and recognize plate characters in vehicle images.
Despite the perception that ALPR is a solved problem, the identification of
vehicles with low-quality cameras (such as from mobile phones), at high speed,
or in countries with a vast number of plate designs (such as the USA) still poses
research challenges. Also, industry experts estimate that the time to deploy an

1 See, for instance, www.bump.com
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Fig. 1. Overview of the system. Note: For privacy reasons, license plate images and
numbers are fictitious.

existing ALPR system in a new state or country, including sample acquisition,
manual annotation, re-training and fine-tuning can take months.

In this paper, we move away from traditional ALPR techniques and advocate
for data-driven approaches for vehicle identification. Here, given a plate image
region, the idea is to search for a near-duplicate image in an annotated database;
if found, the identity of the near-duplicate is transferred to the input region. Our
goal is to show that with state-of-the-art image representations for retrieval,
such as Fisher vectors [5, 6], the data-driven approach is feasible in terms of
speed and robustness, and presents advantages. First, a very significant and
somewhat counter-intuitive finding of this paper is that a matching approach
can actually outperform ALPR in close-world systems - i.e. when for all the
vehicles to identify an annotated instance exists in the database. Secondly, the
time-to-deploy is reduced: image matching requires plate-level annotations while
ALPR demands character-level segmentations and definition of character sets or
language models, which is more costly to obtain. And thirdly, the accuracy of
image matching degrades less critically than for ALPR when moving to low-
quality cameras.

However, an obvious issue of near-duplicate matching is that a vehicle which
has not been previously registered in the database cannot be identified. For ex-
ample, an authority needs to perform a search for a vehicle with known license
plate number but the image database might not contain that plate. To overcome
this difficulty, we propose to use a photo-realistic rendering approach [7] to gen-
erate a license plate image for “wanted” plates and add them to the database.
We demonstrate that using those simulated images does not impact the match-
ing accuracy, and also that this accuracy can be boosted using a better similarity
function obtained through similarity learning, in the spirit of recent works on
domain adaptation [8].

An overview of the method is shown in Fig. 1. The rest of the article is
structured as follows. §2 describes the matching approach and image descriptor.
§3 elaborates on the image simulation approach. §4 reports the experimental
validation. In §5 the conclusions are drawn.
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2 Data-Driven Vehicle Identification

So far the predominant technique for image-based vehicle identification has been
ALPR. We refer the reader to the survey [3] and the more specific papers [1, 4, 2]
for details. However, in recent years there has been an impressive progress in
image retrieval, both in terms of discriminative power of features and compres-
sion/indexing, and state-of-the-art methods are capable of comparing an image
with a database of millions of images in milliseconds [9] with high accuracy and
modest computing resources.

Inspired by these recent results, this article proposes a data-driven view for
vehicle identification. Here, given an image of an unknown vehicle, captured
either from the infrastructure, from an on-board camera or from a mobile device,
the approach we propose is to describe the license plate sub-image and match
it against a database of annotated license plate images with state-of-the-art
retrieval techniques. If a near-duplicate image is found, the annotated license
plate number is transferred to the input image. Similar ideas have been used
with success to solve the problems of image geo-tagging [10] or image completion
[11] , among others, but we are not aware of previous attempts for ALPR (or in
general any scene text recognition).

This section discusses the plate image descriptor and matching approaches.
We omit the details on plate localization here as this is not the core of the work.
For reference, Fig. 4 illustrates the achieved level of plate segmentation.

Plate Features. For the license plate image descriptor we extract Fisher vectors
[5] since these have been reported to be state-of-the-art descriptors for image cat-
egorization tasks [6] and very large-scale image retrieval [9], and show robustness
in the range of photometric and geometric variability present in our application.

In a nutshell, Fisher vectors work by aggregating local patch descriptors into a
fixed-length representation. First, SIFT patches are extracted at multiple scales
on a regular grid, and their dimensionality is reduced using principal component
analysis (PCA). A visual vocabulary is built by estimating a Gaussian mixture
model (GMM) with patch descriptors extracted from a held-out set of images.
The Fisher vector is computed as the derivative of the log-likelihood with respect
to the GMM parameters. For instance, if we consider the means only, it can be
shown that the expression is given by

fid = γi(xt)

[
xt,d −mi,d

(Si,d)2

]
, (1)

where γi(xt) is the soft-assignment probability of the tth patch to the ith Gaus-
sian, xt,d is the dth component of the ith patch, and mi,d and Si,d are the
dth components of the mean and standard deviations of the ith Gaussian, as-
suming diagonal covariances. Here, i = 1 . . .K and d = 1 . . .D. If we only use
the derivatives with respect to the mean2, then the resulting Fisher vector is a

2 We discard derivatives with respect to the weights or the variance since they only
bring a small improvement but do impact computation time and signature sizes.
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concatenation of the K ×D elements fid. We also apply the square-rooting and
�2-normalization of [5], and make use of spatial pyramids to account for spatial
information.

Matching. Since the Fisher vector is an explicit embedding of the Fisher kernel,
the corresponding similarity measure between two such image descriptors x and
y is the dot product xTy. A candidate plate is compared against all images in a
database and we assign the identity of the closest match, provided the similarity
is sufficiently high.

The advantage of matching with respect to ALPR systems is that character
segmentation is not necessary, and that it is “agnostic” of the character set, lay-
out and design of the plates; it just assigns an identity by finding a near-duplicate
image. This is advantageous e.g. for US plates, which present stacked charac-
ters, graphical symbols or complex backgrounds for which character recognition
techniques have difficulties dealing with. An illustration of these difficulties is
shown in Fig. 2.

Fig. 2. License plate templates showing typical difficulties for ALPR systems: state
symbols, stacked characters, complex backgrounds

Also, the time to deploy a matching platform in a new location is much
shorter than for an ALPR system since the latter requires manual character-
level annotation and learning the character classifiers.

3 License Plate Image Simulation and Matching

A requirement of data-driven identification is that each potential identity needs
to be represented at least by one example in the database. This requirement is
fulfilled in “close-world” applications such as entry-exit matching, identification
of returning vehicles, or access control of pre-registered vehicles. However, in
many situations it is also useful to search for or identify unexpected or previously
unseen vehicles.

We propose to bypass this limitation by simulating images of license plates
for previously unseen vehicles, following the approach of [7]. This was used to
generate a dataset of realistic license plate images for character classifiers for
ALPR in an inexpensive way. Nevertheless, to the best of our knowledge, this
method has not been applied before to produce images to populate a dataset for
matching3.

3 In computer vision, data simulation has been used to synthesize training data for
pedestrian detectors [12], 3D object recognition [13] or scene text classification [14].
In the document analysis literature we find works which synthesize word images for
search [15, 16] but the complexity of these document images is much smaller than
for outdoor license plates.
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3.1 Image Synthesis and Photo-Realistic Transformation

License plate simulation consists of two main steps: (i) synthesizing an ideal
license plate image, and (ii) applying transformations to reproduce the charac-
teristics of real license plate images. Next we summarize the process. We refer
the reader to [7] for the details.

Synthesizing an Ideal License Plate Image. Synthesizing an ideal license
plate image basically requires defining the background template, the font prop-
erties, and the valid character sequences and positions. This information can
be obtained from existing specifications. Also, existing resources such as on-line
repositories of license plate templates4, character erasure methods or software
tools that produce TrueType fonts from character examples can be exploited to
assist this one-off procedure.

Thus, license plate images can be produced by overlaying the desired character
sequences with the appropriate font in the template at adequate positions. See
first steps of Fig. 3(a) for illustration.

(a) (b)

Fig. 3. (a) Overview of license plate simulation. (b) Distortions considered.

Photo-Realistic Transformation. A number of transformations and distor-
tions are applied next to produce realistic images which simulate camera capture.
Fig. 3(b) illustrates some operations considered.

For instance, in ALPR it is common to use near-infrared cameras since they
present better signal-to-noise ratio across different illuminations and day/night
variations. Thus, a color-to-infrared transform is needed. Here, a transformation
IIR = max(wRR,wGG,wBB) is applied to (R,G,B) pixel intensities, where wR,
wG, and wB are relative material transmittances in the R/G/B channels and are
adjusted from RGB-IR value pairs.

Then, image brightness and contrast are adjusted using a simple affine trans-
formation Iout = αIIR+β to the IR intensities, the parameters also being learned
from contrast value pairs of real and synthetic plates.

A number of other transformations are considered: blur (in the form of a
resolution conversion which was found to be more effective than spatial filtering),
or adding shadows, rust or spurious noise.

4 e.g. www.blankplates.com

www.blankplates.com
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Finally, to ensure that we produce tight plate regions in similar conditions as
for the real plates (see section 2), simulated license plate images are inserted into
a set of full-vehicle images with the four license plate corners manually marked.
The corresponding affine transformation between the simulated image plane and
the 4 corners is determined. After that, the plate localization algorithm is run
to yield the tight plate regions. An example of a real and simulated tight regions
as obtained by the detection algorithm is shown in Fig. 4.

Fig. 4. Plate regions of simulated (left) and real license plates (right)

3.2 Similarity Learning

To increase the efficiency of matching synthetic and real plate images, we em-
ploy similarity learning. A number of distance and similarity learning methods
have been proposed in the machine learning community (see, e.g. [17, 18]) which
basically seek a projection of the data more suitable for nearest-neighbor classifi-
cation or ranking. Interestingly, asymmetric distance learning has been employed
in the computer vision literature to match images of two different domains [8],
which is close to our problem.

Denote s the descriptor of a simulated plate image and r that of a real plate
image. We search for a function of the form k(r, s) = rTWs. In a default set-
ting where W equals the L × L identity matrix, k is the dot product which
is the standard measure of similarity between Fisher vectors. However, we aim
at finding a more suitable W inspired by the large-margin supervised semantic
indexing [17] approach.

We search for a matrix W which minimizes the following loss∑
(r,s+,s−)

max{0, 1− k(r, s+) + k(r, s−)}. (2)

where s+ is a simulated sample with the same identity as the real sample r, and
s− has a different identity. Note that minimizing the loss encourages k(r, s+) >
k(r, s−) + 1, i.e. pairs with the same identity should have a higher similarity
than non-matching pairs, which is a desirable property of a similarity function,
and the +1 acts as a “safety” margin to promote generalization.

This loss function can be optimized using Stochastic Gradient Descent (SGD)
[19]. Following straightforward derivations, it is possible to show that the train-
ing procedure consists in repeating the two following steps: (i) sample a triplet
(r, s+, s−) randomly, and (ii) perform the gradient update

W ←W + ηr(s+ − s−)T (3)

if the loss max{0, 1− k(r, s+) + k(r, s−)} is positive, where η is a learning rate.
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We initializeW with the identity matrix so we start from a reasonable solution
(dot product).

4 Experiments

The proposed data-driven vehicle identification method is validated using real
data collected in open-road tolls in several installations in the USA. Vehicles
driving at about 50mph are detected by loop sensors which trigger an image
capture of the full vehicle. Images contain a vast variety of vehicle types and
times of day and the different locations imply different camera perspectives and
from front/back directions with expensive tolling cameras. The images come in
resolutions of 768×484 and 1920×512 and contain near-infrared intensity values
(as this has a better signal-to-noise ratio for the license plate region across a
range of illuminations, which for instance permits capturing license plates even
at nighttime). The equipment and configuration is optimized for ALPR. An
example image is shown in Fig. 1.

Note that this corresponds to the case where vehicles are identified by the
infrastructure but the method is general and could apply to other settings such
as on-board cameras and mobile phones (note the resolution and high vehicle
speed). We obtain a dataset for our experiments by running a license plate
detection algorithm.

Image Matching for Vehicle Identification. We evaluate image match-
ing alone as a vehicle identification method and compare it to two industrial
ALPR products representing two off-the-shelf baselines for identification. We will
demonstrate not only that image matching is feasible for identification, but also
that matching can outperform ALPR in some cases.

To that end, we use a “database” of about 35K images (corresponding to one
week of data) and an evaluation set of 11K samples, with license plate number
ground-truth. For each query image, we determine the most similar image in the
database and output the license plate number of the match and the similarity
value as confidence score. This is directly comparable to the ALPR baselines
which also output a license plate number associated with a confidence.

Figure 5(a) shows the accuracy-reject curves for the two ALPR systems and
the image matching, where we use the dot product between Fisher vectors as
the similarity measure. Reject represents the fraction of samples with confidence
below a threshold, and accuracy the fraction of samples with confidence above
the threshold whose outputs match the ground-truth annotations. We observe
that the ALPR systems reach a maximum accuracy in the range 80%-90%, for
reject rates of about 40%. The reason why the accuracy never reaches 100%
is because some plates contain graphical symbols, stacked characters and other
artifacts that the ALPR systems are not able to deal with. In contrast, matching
yields a much higher maximum accuracy, close to 100%, since it is agnostic on
character dictionary, language, etc. However, this accuracy is only reached at a
very high reject rate (about 90%) and quickly drops for smaller reject rates. This
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is because most of the plates in the query set are not present in the database
and are rejected by the system.

However, the situation changes if the query images do have at least one “true”
match in the database. If we consider only the set of about 5K queries which
have an instance in the database, we obtain the result of Fig. 5(b). Now not only
image matching reaches close to 100% at a much smaller reject rates, but it also
clearly outperforms the ALPR systems both in accuracy and reject rate.

Thus, image matching is a good vehicle identification method, actually better
than commercial ALPR systems, provided that annotated examples are available.

(a) (b)

Fig. 5. Accuracy of image matching for identification: (a) when not all queries have
a matching instance in the database, (b) when all the queries have an instance in the
database

Use of Simulated Plates. In this section we evaluate the capability of the
system to identify previously unseen vehicle identities through image simulation.
We consider a set of 582 plate identities for which we synthesize a random number
of plate images with different distortions using the method described in section 3,
resulting in a set of 3,476 images. A set of 582 real images of the same identities is
selected, to query with those and assess whether they are found in the database.
This corresponds to a situation where there is a list of identities to be checked
and a system captures images and compares each image with the synthesized
images of the wanted identities, using again the dot product as similarity measure
(i.e. no metric learning yet; experiments with metric learning are reported in the
next paragraph). The error-reject characteristic of this setting is depicted as a
solid, blue curve in Fig. 6 .

Then we repeat the experiment by replacing each synthetic image with a real
image of the same license plate number (with random selection when there are
more real images than synthetic ones). The corresponding curve is displayed in
dashed red in Fig. 6. We observe that the curves corresponding to a synthetic
and a real database are essentially on par. Therefore, we conclude that using a
synthesized license plate has essentially the same effect as the real plate. Thus,
generating license plate images is an effective way to enable the search for pre-
viously unseen vehicle identities.
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Fig. 6. Comparison between accuracies of real and synthetic plates in a retrieval task

Similarity Learning. We evaluate the similarity learning method of section
3.2 for the task of matching real to synthetic images. We essentially use the
same set as for the previous experiment but we divide the query and database
into two halves both containing synthetic and real plates for training and eval-
uation. We report both identification accuracy rates at 0% reject (acc0) and at
20% reject(acc20) and the mean average precision (mAP) to assess whether the
learned similarity also performs well in ranking the database images beyond the
first-best result. Results are summarized in Table 1.

Table 1. Results with similarity learning

acc0(%) acc20(%) mAP(%)

No learning 78.6 87.8 77.2
Similarity learning 81.9 92.7 81.5

These results are with 100 training epochs and η = 10−2. Table 1 shows that
the metric learning algorithm improves both the accuracy and the mAP.

5 Conclusions

This article demonstrates that a data-driven view of vehicle identification with-
out ALPR is feasible, and actually more accurate than ALPR in some scenar-
ios. We believe that entry/exit control or matching for assisting manual plate
verification are two applications that can benefit from the proposed method.

The proposal has been validated on images captured from the infrastructure.
Although validation for on-board or mobile device cameras has not been per-
formed, we believe the method is general and also applicable to these scenarios.
Actually, in a set of experiments not reported here, it was observed that reducing
the resolution of the images does not degrade the image matching accuracy as
severely as it did for ALPR.
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A line of future work is to go for compressed signatures in applications where
the large database size is of concern.
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