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Abstract. We present a system for automatically detecting obstacles from a 
moving vehicle using a monocular wide angle camera. Our system was devel-
oped in the context of finding obstacles and particularly children when backing 
up. Camera viewpoint is transformed to a virtual bird-eye view. We developed 
a novel image registration algorithm to obtain ego-motion that in combination 
with variational dense optical flow outputs a residual motion map with respect 
to the ground. The residual motion map is used to identify and segment 3D and 
moving objects. Our main contribution is the feature-based image registration 
algorithm that is able to separate and obtain ground layer ego-motion accurately 
even in cases of ground covering only 20% of the image, outperforming 
RANSAC. 

1 Introduction 

Many automotive accidents involve cars backing up [1]. Existing backup warning 
systems based on sonar or radar sensors provide gross localization information, not 
enough to accurately determine if the vehicle will collide with an obstacle. Ranges go  
 

 

Fig. 1. (Left) An image taken from a camera rigidly mounted on a vehicle. (Right) Result of 
virtually rotating the camera view to bird-eye view. 
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up to 5m. Reaction times for humans are between .25s and .8s before brakes are even 
applied [2]. A car backing up at 15mi./h will travel 5m in .75s, which might be too 
close for comfort. 

Cameras offer the capability to extend range and determine the nature of the alarm. 
Research work in rear obstacle detection using cameras include [3][4][5]. 

Previous systems for obstacle detection based on cameras sometimes utilize stereo 
and sometimes monocular input. Many utilize the idea of inverse perspective mapping 
(IPV) in polar histogram analysis, for example [5] and [6]. The paper in [6] uses ste-
reo, IPV and polar histograms to detect close range obstacles. Work in [5] uses only 
one camera but coarsely uses polar histogram analysis due to not being able to obtain 
accurate ego motion. In [3] a system is presented that uses monocular input and ego-
motion from odometry sensors. The authors in [4] present a system for backup aid 
that detects obstacles from three independent methods, fused at the output stage. It 
assumes road boundaries are always within the video image and has some difficulty 
with false positives due to shadows not being totally eliminated. 

We introduce a method utilizing monocular camera input from a wide angle cam-
era that is a valuable alternative to polar histogram analysis. A novel ground ego-
motion recovery algorithm is developed. Obstacle segmentation is based on variation-
al optical flow algorithms. We assume an urban setting with a ground layer that in a 
short range around the car is parallel to the car longitudinal axis.  

The rest of the paper is organized as follows: section II describes our system. Sec-
tion III describes its use in a child detection application. Section IV is implementation 
details and section V presents the conclusions. 

2 System Overview 

Our system termed VOFOD (variational optical flow obstacle detection) uses a com-
bination of methods that to the best of our knowledge is novel. By registering the 
ground plane in consecutive image frames and exploiting the obtained ego-motion we 
generate an optical flow map where areas corresponding to the ground layer are set to 
zero. This map provides a motion saliency mechanism that directs attention to areas in 
the image containing obstacles. 

 

Fig. 2. System block diagram. There are three defined stages: feature correspondences, BEV 
registration and ground ego-motion estimation, and residual optical flow for obstacle detection. 
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We change the point-of-view to a virtual camera view looking straight down, 
termed bird-eye view, or BEV (figure 1). This allows us to run fast, accurate registra-
tion based on point features, and ultimately to obtain the ground motion vector.  

We obtain optical flow information for each point in the image, and use the know-
ledge about ground motion to select the flow vectors corresponding to objects not part 
of the ground plane. We accomplish this by projecting the optical flow vectors to 
BEV. The obtained ground motion vector is then subtracted from projected dense 
optical flow, selecting moving areas not belonging to the ground plane.  

In BEV, points at a height with respect to the ground plane will have a different 
difference in deformation than points in the ground plane when looking at consecutive 
images. Optical flow vectors in BEV are easily classified into ground/non-ground, 
and by assuming a planar ground, classified into obstacles and non-obstacles.  

The algorithm consists of three stages (figure 2): 

-Stage 1: Finding feature correspondences in consecutive images. Transforming 
point feature locations to BEV. A map is generated to obtain metric distance from the 
camera to a particular pixel location.  

-Stage 2: Classifying feature points into ground/non-ground by means of our 
registration algorithm. Obtaining three-parameter homography (ground ego-motion). 

-Stage 3: Estimating an 8-parameter homography transformation between consecu-
tive frames, in original camera viewpoint. Obtaining residual optical flow and seg-
menting obstacles. Outputting metric distances from vehicle to obstacles.   

2.1 Stage 1 

Stage 1 is an algorithm to extract image feature points and virtually transform them to 
a virtual camera viewpoint looking straight down. Figure 1 shows an example image 
after virtual camera rotation. Changing viewpoint simplifies the problem of estimating 
ego-motion by reducing the number of unknown parameters from eight to three. This 
simplification allows us to estimate orthographic transformation parameters directly, 
with corresponding benefits in terms of registration accuracy and speed (see figure 5).  

 

Fig. 3. Result of stage 2. Two bird-eye view images have been registered. (Left) The red dots 
are features in image 1. Green circles indicate features in image 2 that have been classified as 
ground. (Right) Simulation to obtain registration error: Ground points are localized in a small 
area. Red = image 1 points. Green = image 2 points. Blue = transformed image 2 ‘obstacle’ 
points. Thick blue = transformed ‘ground’ points. 
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Suitability to obstacle detection applications of a particular feature detec-
tor/descriptor will depend on video quality, feature matching accuracy and computa-
tion speed. In our application scenario, images are captured by a fish-eye rear  
production camera with relatively low video quality. Another important fact is that 
concrete surfaces tend to have low feature density, making it difficult to extract 
enough quality features for registration. A BEV camera viewpoint exploits the approx-
imation of vehicle motion as planar motion and offers the advantages of no ambiguity 
between rotational and translational ego-motion parameters, and reliability in trans-
formation parameter estimation due to the linearity of image motion.  

Point feature types found in literature include SIFT, SURF, Harris, KLT, and Cen-
SurE. Perhaps not surprisingly, SIFT[10] produced the best quality registration in terms 
of average re-projection error. However, unless accelerated by GPU, it might be unsuit-
able for hard real-time applications. A second best is Center Surround features (Cen-
SurE) [12], a feature type designed in the context of visual odometry in rough outdoor 
terrain over long periods. We found its reliability to be close to SIFT with speed im-
provements of four to five times.  It produces the best compromise between match qual-
ity and speed. In all of our video test sequences, both CenSurE and SIFT have produced 
enough quality correspondences in production fish-eye cameras currently installed in 
automobiles. Other detectors we tested, such as SURF and KLT, have not. 

2.2 Stage 2 

The main novelty of our obstacle detection approach lies in this registration algo-
rithm. It estimates orthographic transformation parameters, minimizing re-projection 
error and eliminating outliers.  

Stage 2 takes as input BEV feature locations and their matched correspondences 
and calculates ground ego-motion. Ground points are found by first finding image 
features lying on a plane parallel to the virtual camera plane and refined by eliminat-
ing features lying on surfaces ‘at height’ with respect to the ground.   

Methods to determine the ground plane include 2D dominant motion estimation 
and layer extraction. These methods can be top-down or bottom-up. Top-down 
 

 
 
Fig. 4. Euclidean error per feature correspondence (pixels). RANSAC-based BEV registration 

(blue) vs. MST-based method (red). The X-axis represents the percentage of ‘ground points’. 
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approaches assume the ground plane is dominant in the scene, or alternatively that the 
scene can be modeled with a few planar layers. In car backing up scenarios the 
ground plane might not be dominant and the scene is not necessarily well modeled 
with a few planar layers. 

Bottom up approaches divide the image into small patches where a local patch 
transformation is calculated. These transformation calculations are then grouped to-
gether to form layers.  In [7] measurements are combined with a robust weighting 
scheme for global ego-motion determination and ground plane segmentation. A regu-
larization step is later applied to recover small non-planar motions. Our own prelimi-
nary implementation of the scheme in [7] yielded performance and speed that con-
vinced us point features are still the way to go.   

We developed a point feature-based registration scheme that does not assume a 
dominant ground layer. Our approach produces good quality registration even in cases 
of 80% of the image being background clutter and obstacles. 

We utilize a two-tiered algorithm to obtain matches between two BEV clusters of 
points according to an orthographic projection model. The two tiers are a Minimum-
Spanning Tree (MST) [17] followed by RANSAC or one of its variants [8][9]. A fea-
ture selection strategy outputs a “bag” of candidate ground features, after traversing 
an MST generated between the point correspondences in the first image. We test each 
vertex plus its immediate connected neighbors (a local set) against the corresponding 
local set in the second image. A direct least-squares estimation technique [12] is used 
to compute the transformation parameters between local sets, as well as to choose sets 
with low average re-projection error.  These sets of features are added to a global 
“bag” of candidate ground points. Finally, we use RANSAC to obtain the final global 
orthographic transformation between bag points. Although the MST stage is enough 
most of the time,  local sets of points in surfaces (at height and parallel to the ground) 
will pass the least-squares re-projection error test. RANSAC is applied to eliminate 
these outlier sets.   

MST allows us to exploit naturally occurring clusters of ground features and pro-
duces more accurate registration in the presence of higher number of outliers than 
RANSAC. It also avoids having to unnaturally segment the image into coarse blocks 
for analysis that a two-tiered RANSAC scheme would require. Exploiting the fact that 
ground features tend to cluster together becomes crucial in cases where it is difficult 
to localize repeatable feature points, such as concrete surfaces in roads and parking 
lots. Figure 3 shows registration of two BEV frames after obtaining 2-D ground mo-
tion parameters.  

In order to compare registration quality between MST and RANSAC, we tested 
both algorithms on simulated data over 100+ trial runs. We generated a number of 
random points in one set, belonging to ground and non-ground (fig. 3, right). Ground 
points in a second set correspond to the first set, transformed according to known 
rotation and translation. Uncertainty in position is added to points in the second set. 
Ground points have a Gaussian spatial error in pixels of (μ=2.5, σ=1.45) and non-
ground points follow a Gaussian distribution with (μ=25, σ=14.5). The proportion of 
ground points is varied from 10% to 90% and re-projection error for both algorithms 
is obtained. We added a tendency of ground points to cluster together spatially.    
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Figure 4 compares registration quality of MST vs. RANSAC [8]. X-axis represents 
percentage of true ground points in the set.  MST efficiently exploits the tendency of 
points of the same class to cluster together in order to register images with a minority 
of ground points.  

Our registration algorithm provides an improvement over other conventional me-
thods for ground registration [16] (Fig.5).  

Description of stage 2 is as follows: 

1. Generate an MST graph between BEV point locations. 
2. Obtain groups of features that are spatially close, by traversing MST. 
3. Classify clusters as ground/non-ground according to conformance to an orthographic 

transformation model. Classification is based on average re-projection error [12].  
4. Calculate 2-D ground motion using all selected ground point clusters. Global 

orthographic transformation is obtained by a RANSAC-style algorithm [9] to 
eliminate entire clusters that might have low average re-projection error but are 
non-ground. 

5. Classifying original feature points obtained in direct view, into ground/non-
ground, by their corresponding BEV re-projection error. 

6. Obtain ground motion vector. 

Once ground has been registered, obstacles can be detected by exploiting mis-
registration that objects at height or moving objects exhibit. We accomplish 
segmentation by obtaining a residual dense optical flow map in stage 3. 

2.3 Stage 3 

Stage 3 produces a residual motion map for non-ground plane objects. With a moving 
camera detected obstacles can be stationary or moving. If the camera is stationary, 
only moving objects will be detected.  

To find obstacles it is not enough to cluster point features that have been classified as 
non-ground. More exhaustive image analysis is needed. We utilize dense optical flow for 
that purpose. Optical flow obtains regions of interest in the image, as well as provides an 
interest score to a particular pixel locations, according to the magnitude of the flow vector.  

 

Fig. 5. Comparison of ground registration quality. (Left) Using a top-down method from litera-
ture to directly estimate 8-parameter homography. (Right) Using stage 2 algorithm, re-projected 
to normal camera view. 
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Recently, variational numerical schemes have been used successfully to obtain high 
accuracy and real-time dense optical flow.  We use a bidirectional multi-grid method 
for accelerated variational optical flow computations (VOF) [13]. This method 
enables generation of our obstacle likelihood map.  

The approach found in [13] can be considered a generalization of the traditional 
Horn-Schunck algorithm, but allowing for multi-grid schemes with non-dyadic grid 
hierarchies, as well as fast variational numerical methods for solving systems of  
equations.  

Residual motion maps indicate motion different to ground plane motion. After ob-
taining optical flow vectors from two consecutive images, we project the vectors to 
BEV and subtract them from ground motion obtained in stage 2 (figure 6, center). 
Resulting BEV residual flow is used to obtain flow in direct view without barrel dis-
tortion. We use the mapping between BEV coordinates and direct view coordinates to 
create a binary mask in direct view that in combination with the optical flow map 
produces residual motion (fig. 6).  

As the ground plane has been obtained, the camera has been calibrated, and the re-
lationship between bird-eye views and original views are known, distances (in feet or 
meters) from the vehicle to the base of obstacles are straightforward to calculate. 
They vary linearly with height (fig. 1, right).  

While varying the point-of-view to estimate ground motion and VOF computation 
are methods found in literature, their combination and application to obstacle detec-
tion is new to the best of our knowledge. Our registration algorithm plus VOF me-
thods provide a powerful, novel alternative (and perhaps complement) to other simp-
ler real-time algorithms in automotive applications. 

Calculation of dense optical flow and BEV ground ego-motion estimation are cur-
rently implemented as parallel threads. Once the ground motion vector is obtained, we 
merge the results to produce the residual motion map and obstacle segmentation. 

In summary, stage 3 consists of: 

• Calculating dense variational optical flow for the image. 
• Transforming VOF to bird-eye view (BEV).  
• Subtracting BEV-VOF from ground plane motion vector 
• Determining VOF of obstacle pixels in direct view.  

   

Fig. 6. (Left) Original image. (Center) BEV residual flow. Ground motion is shown as a small 
green arrow enclosed in the yellow circle. (Right) Residual optical flow map: color represents 
flow vector direction, intensity represents flow magnitude. 
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Figure 6 (right) shows the color-coded map obtained from stage 3. Distances from 
the camera to the corresponding position in the ground plane are known, varying ac-
cording to Y coordinate in the undistorted image.  When looking for obstacles that 
have an expected height range, this information allows us to estimate the size in pixels 
such an obstacle would have.  

In the optical flow map in figure 6 (right), intensity represents magnitude of the 
flow vector, whereas color represents vector direction. This image can be used as a 
saliency map or it can be combined with other static-image saliency algorithms [14] 
to indicate regions of interest. In our example application, normalized magnitude of 
the optical flow vector at a pixel represents a likelihood of it belonging to an obstacle.  

3 Application: Child Detection 

VOFOD is used in combination with a state-of-the-art parts-based person classifier 
termed FSM (feature synthesis [15]) to detect children in arbitrary poses. Processing 
times for state-of-the-art parts-based classifiers is still far from real-time unless the 
number of input windows is drastically reduced. VOFOD is used to reduce the typical 
number of input windows from >50K to less than 500 after non-maximal suppression 
(nms). 

Figure 7 is the result of exhaustively searching for windows of height approximate-
ly expected of children. Boxes were generated with a fixed aspect ratio, and their 
height is adjusted according to Y-coordinate to fall within an acceptable range. We 
sum the values of the VOFOD saliency map inside each box and obtain a child detec-
tion likelihood. Only boxes with a score above a predefined threshold are colored. 
Lighter colors represent higher box scores.    

Although it is making great strides, state-of-the-art in human arbitrary pose detec-
tion still needs to improve. At the same time, in a collision warning application it is 
important to eliminate false positives as they desensitize the driver to ignore alerts. 
Under such conditions, it might be desirable to operate under low probability of child 
detection but very low false positives. Meanwhile, moving and close obstacles are 
still detected.  VOFOD excels under such conditions.  

   

Fig. 7. (Left) Using residual flow map for child detection: boxes were generated according to 
expected child height and scored according to average flow intensity. Only boxes scoring above 
a threshold are colored (Right) Detections with a parts-based classifier. 
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Our video sequences include children at all distance ranges. Camera is moving less 
than 50% of the time. With a moving platform, static children at close and mid ranges 
can be detected by residual optical flow. However, non-moving children standing far 
away will not be detected. By using VOFOD in combination with an image-based 
saliency algorithm, such as frequency-tuned saliency (FTS [18]), we operate in high 
probability of child detection with approximately 50% window reduction over nms. 
Figure 8 shows the probability of child detection by FSM parts-based classifier, ac-
cording to the reduction in number of input windows. We compare VOFOD, VOFOD 
+ FTS, FTS itself, and random scoring.  We detail our experiments to determine sys-
tem performance in [14]. 

4 Implementation 

We feel the VOFOD implementation can be greatly optimized, perhaps up to an order 
of magnitude. Current execution times, in C++ are 3.3 FPS for stage 1 + 2 (combined, 
in 640 x 480 resolution) and 2.5 FPS for stage 3 in 320 x 240 resolution. Timings are 
in an Intel Xeon CPU W3550 @ 3.07 MHz.   

Many optimizations are possible in our proof-of-concept code, including avoiding 
processing in parts of the image and making the code more efficient. The slowest 
components are point feature extraction and dense optical flow. The complete system 
runs at video rate by processing only two or three pairs of consecutive images per 
second of video.  
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Fig. 8. Probability of child detection by FSM, according to number of input analysis windows. 
VOFOD+FTS eliminates 49% of all windows over exhaustive approach after nms. 25% more 
windows over random scoring. 

5 Conclusion 

We have introduced an obstacle detection system based on BEV registration for esti-
mating ground motion, and variational dense optical flow for detecting obstacles.  
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Our approach of using an MST for ground point selection resulted in acceptable sepa-
ration of ground regions in cases with very few ground points, the instances in which 
RANSAC by itself tends to fail. This in turn allows for better registration and ego-
motion estimation. Fast variational optical flow allows us to segment obstacles by 
analysis of a residual motion map. One example application of our algorithm is as an 
attention mechanism for child detection. Highlighted areas can be later processed with 
a parts-based classifier to identify children. Utilization of this attention mechanism 
greatly reduces computation time allowing for real-time performance. 
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