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Abstract. In this paper we propose to investigate the use of a vecto-
rial total variation model with spatially varying regularization and data
terms for color image denoising and restoration. We pay attention to two
main minimization problems: the minimization of a weighted vectorial
total variation term TVg, which acts as a regularization term, using the
L2 norm as data term or the minimization of the vectorial total variation
with a spatially varying L1

g norm. The optimization process takes benefit
of convex optimization tools by introducing an augmented Lagrangian
formulation. This formulation leads us to simple and efficient algorithms
based on Uzawa block relaxation schemes that are also robust towards
the choice of the penalty parameter. In this paper, We propose to study
more particularly the impact of spatially varying terms (total variation
term or data terms) for color image restoration. A new weighted total
variation term is proposed for old parchments restoration and we also
compare the use of a weighted total variation term with a spatially vary-
ing data term for impulse noise removal in color images.

1 Introduction

In this paper, we are interested in addressing the vectorial (color) image restora-
tion problem through the minimization of a unique criterion that takes benefit
of a vectorial total variation term acting as a regularization term. Such a crite-
rion proves to be interesting notably to cope with the regularization of correlated
vectorial image features and may avoid to find an appropriate color space change
when dealing with color image restoration. Let first remind that the importance
of total variation for image restoration has been largely proved since the seminal
ROF model introduced by Rudin, Osher and Fatemi [1]. In this work, the authors
propose to recover the restored image u from a noisy image f by minimizing the
following criterion :

E(u) =

∫
Ω

|∇u(x)| dx+ λ

∫
Ω

|f(x)− u(x)|2 dx (1.1)

where Ω is the image domain, u : Ω → R is the unknown restored image, f is the
observed image and λ a positive scale parameter. The model (1.1) is also called
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TV +L2 model. Such a framework has been intensively investigated for denoising
[1,2]. It has also been extended by changing the L2 norm by a L1 norm (TV +L1

model) for salt and pepper noise removal (see for example [3]), texture extraction
or decomposition (e.g. [4]) or shape denoising (e.g. [5]). The minimization issues
of such problems are not trivial due to the non differentiability of the total
variation regularization term and also of the L1 norm and have been addressed by
many authors. For example, standard calculus of variations and Euler-Lagrange
equations can be used to compute the PDE that will drive the functional u
towards a minimum of E. This method requires a smooth approximation of the
L1 norm and a small time step must be chosen so as to ensure the convergence.
This often leads to a large number of iterations as mentioned in [5]. In [6], a
MRF (Markov Random Field) model is proposed which uses the anisotropic
separable approximation (i.e. |∇u| = |Dxu| + |Dyu| where Dx and Dy are the
horizontal and vertical discrete derivative operators). This approximation is also
used in [7] where the authors proposed an efficient graph-cut method. In all
these approaches, an approximation or a smoothing of the L1 norm is required.
In [5,8], based on the works of [2,9,10,4], a fast minimization algorithm based
on a dual formulation is proposed for the minimization of TV + L1. Thanks to
such approaches, they do not need any approximation or smoothing of the L1

norm, they rather take benefit of a convex regularization of the criterion which
was first proposed by [4]. More recently, a lot of very efficient numerical methods
using convex analysis tools have been proposed. Among them, we can cite the
primal-dual method proposed in [2], the split Bregman method [11] or the unified
framework proposed by Pock and Chambolle [12]. Such algorithms have become
popular due to their low computational cost. In this paper we also take benefit
of convex optimization tools by using a simple and efficient algorithm based
on Uzawa block relaxation schemes and an augmented Lagrangian formulation
[13,14]. This scheme is efficient and have the nice property to be robust towards
the choice of the penalty parameter. Moreover, it is here computed and applied
in the special case of vectorial (color) image restoration.

When dealing with multi-components images (such as color images), the im-
age f becomes a vector with n components (e.g. f = (f1, f2, f3)

T and n = 3 for
color images) which leads to revise the above criterion and to propose a well-
adapted definition of the vectorial total variation term. In a first work, Blom-
gren and Chan [15] propose to restore vector-valued images using a vectorial
adaptation of the total variation term. Later, some other color total variation
models have been proposed by different authors (see for example [16,17]) for
color image restoration. In [16,17] the vectorial total variation term to minimize
becomes an integral over a function of the larger and smaller eigenvalues of the
structure tensor proposed by di Zenso [18] (see also [19] for a recent review on
anisotropic color diffusion PDEs). When the function is chosen to be the iden-
tity, their scheme leads to the minimization of the following regularization term∫
Ω
(||∇u||) dx where ||∇u(x)|| = (∑n

i=1 |∇ui(x)|2
)1/2

is the Frobenius norm of
the derivative ∇u. This vectorial total variation regularization term has then
proven to be convenient when dealing with minimization using dual approaches
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[20,21,22,23] and leads to good results for color restoration due to its link to
the eigenvalues of the structure tensor. However, this regularization term fails
in preserving sharp details like edges and texture regions.

In order to circumvent such problems, recent works (see for example [24]
for color restoration) propose some spatially varying terms in the functional
to minimize. The idea is to weight the data term differently according to the
localisation in the image by minimizing a spatially adaptive functional of the
form:

E(u) =

∫
Ω

||∇u(x)|| dx +
1

τ

∫
Ω

λ(x)|f(x) − u(x)|τ (1.2)

with τ ∈ [1, 2]. Here, the function λ(x) is similar to the constant λ but is cal-
culated on each point of the image. For example, a recent work [24] establishes
a general framework for color image restoration dealing with both the L2 and
L1 cases. It is solved by Fenchel-duality and semi-smooth Newton techniques.
Some other works rather propose to deal with a weighted total variation term
as for example in [25] for color image restoration or [5,26,8] for grey level image
restoration.

In this work, we then propose to study spatially varying regularization and
data terms for color image restoration. We first solve the minimization of the
following vectorial TVg + Lτ model:

E(u) =

∫
Ω

g(x)||∇u(x)|| dx + λ

∫
Ω

|f(x) − u(x)|τ dx (1.3)

where Ω is the image domain, u : Ω → R
3 is the restored image, f is the

observed image and g : Ω →]0, A] (A > 0) is a function chosen according to
the application or the noise model. In this paper, for space reasons, we propose
the minimization scheme only for τ = 2 but the minimization for the L1 norm
can be performed using the same mathematical framework as proposed in [8].
The constant λ > 0 is a positive scale parameter. Such a spatially varying
regularization term appears to be interesting both for Gaussian [5] using the L2

norm and salt and pepper denoising [27,8] by using a well adapted function g and
the L1 norm. Here, we propose an adapted function g for the restoration of old
parchments. One may ask whether it is more interesting to use a spatially varying
data term or a spatially varying regularization term. Indeed, it depends on the
application. The spatially varying regularization term seems better adapted for
a structural filtering (edges preservation or removing components according to
their structure) while the spatially data term seems better adapted for a syntactic
filtering and can better preserve the intensity of some pixels. In this paper, we
then provide an example which attests the real interest of the TVg term for old
parchments restoration but we also propose an example of impulse noise removal
where a well designed spatially varying data term may be more interesting. To
this end, we then propose to solve the minimization of the following criterion:

E2(u) = λ

∫
Ω

[|∇u1|2 + |∇u2|2 + |∇u3|2
]1/2

dx+
3∑

i=1

∫
Ω

gi(x)|ui(x)−fi(x)|dx, (1.4)
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where g = [g1, g2, g3]
T is now a vectorial function with different components

according to the color channels. Experimental results on simulated noisy im-
ages (salt and pepper on each color channel) provide a first example where this
spatially varying data term may be advantageously used.

The minimization problem and notations are given in section 2 while the
Augmented Lagrangian formulation is detailed in section 3 for TVg + L2 and
section 4 for TV + L1

g. Experimental results are given in section 5.

2 Problem Statement

2.1 Notations and Minimization Problems

Let Ω be a three-dimensional bounded open domain of Rd, d = 2, 3. We consider
a vector-valued function u(x) = (u1(x), u2(x), u3(x)) ∈ R

3 defined on Ω. For a
color image defined on Ω, the components ui stand for the three values of each
color channel (for example the RGB color space). To simplify, vector valued
functions are denoted by bold-face letters (e.g. u = (u1, u2, u3)). The Euclidean

scalar product is u ·v =
∑d

i=1 uivi, for u and v in R
d. Moreover, for u ∈ Rd, we

use the notations: |u|2 = (u ·u)1/2, |u|1 =
∑d

i=1 |ui|, |u|∞ = maxi=1,...,d |ui|
for the Euclidean norm, the 1-norm and the infinity norm, respectively.

Let f = (f1, f2, f3) be an observed (blurry or noisy) color image. We propose
to address the two following minimization problems where u = (u1, u2, u3) is
the unknown image to restore and V is a suitable functions space (or a finite
dimensional space):

• The TVg + L2 which is defined as follows :

min
u∈V

E1(u) =

∫
Ω

g(x)
[|∇u1|2 + |∇u2|2 + |∇u3|2

]1/2
dx+ λ

∫
Ω

|u(x)− f(x)|22 dx,
(2.1)

where g is a scalar function.
• The TV + L1

g model which is defined as follows :

min
u∈V

E2(u)=λ

∫
Ω

[|∇u1|2+ |∇u2|2 + |∇u3|2
]1/2

dx+
3∑

i=1

∫
Ω

gi(x)|ui(x)−fi(x)|dx,
(2.2)

where g = [g1, g2, g3]
T is a vectorial function.

In the case TVg + L2, we precise the first term. Let g be a continuous, positive
valued and bounded function defined on Ω. Let us introduce the weighted total
variation regularization term, denoted by TVg, derived from [5]

J(u) =

∫
Ω

g(x)
[|∇u1|2 + |∇u2|2 + |∇u3|2

]1/2
dx = sup

φ∈Φg

(u,∇ · φ)L2(Ω;R3)

where Φg =
{
φ ∈ C1(Ω,R3) : |φ(x)| ≤ g, for all x ∈ Ω

}
.
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3 Augmented Lagrangian Methods for the TVg + L2

Model

In this section we present Uzawa (dual) methods for solving (2.1). To this end,
we need to transform the convex minimization problem (2.1) into a suitable
saddle-point problem by introducing an auxiliary unknown as for the scalar case
[8]. For space reasons, only few elements are given.

3.1 Augmented Lagrangian Formulation

Let us introduce the auxiliary unknown p = f − u and rewrite the functional
E1 as

E1(u,p) = J(u) + λ

∫
Ω

|p(x)|22 dx. (3.1)

The minimization problem (3.1) becomes

min
(u,p)∈K

E1(u,p), (3.2)

where the constraint set K is defined by K = {(u,p) ∈ X ×X | u+ p− f =
0 in Ω} .

It is obvious that problems (3.1) and (3.2) are equivalent. To the constrained
minimization problem (3.2) we associate the Lagrangian functional L defined
on X ×X ×X by

L (u,p; s) = E1(u,p) + (s,u+ p− f)X . (3.3)

In (3.3), s is the Lagrange multiplier associated with the constraint in K. Since
E1 is convex and continuous, a saddle point (u∗,p∗; s∗) of L exists and verifies
L (u∗,p∗; s) ≤ L (u∗,p∗; s∗) ≤ L (u,p; s∗), ∀(u,p, s) ∈ X ×X ×X.

We now introduce the augmented Lagrangian defined, for r > 0, by

Lr(u,p; s) = L (u,p; s) +
r

2
‖ u+ p− f ‖2L2 (3.4)

where r is the penalty parameter. It can be proved (easily) that a saddle point
of Lr is a saddle point of L and conversely. This is due to the fact that the
quadratic term in Lr vanishes when the constraint u + p − f = 0 is satisfied.
Some efficient numerical schemes can be used to solve this problem like notably
the Uzawa Block Relaxation method detailed thereafter. One important fea-
ture is that this algorithm is well conditioned against the choice of the penalty
parameter r.

3.2 Uzawa Block Relaxation Methods

We apply Uzawa block relaxation methods to the augmented Lagrangian func-
tional (3.4). We can give a symmetric role to the unknowns u and p by updating
the multiplier s between Step 1 and Step 3. We obtain the following Uzawa block
relaxation algorithm.
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Algorithm UBR
Initialization. p−1, s0 and r > 0 given.
Iteration k ≥ 0. Compute successively uk, pk and sk as follows.

Step 1. Subproblem 1 : Find uk ∈ X s.t. Lr(u
k,pk−1; sk) ≤

Lr(v,p
k−1; sk), ∀v ∈ X.

Step 2. Update the Lagrange multiplier sk+1/2 = sk + r
2 (u

k + pk−1 − f )
Step 3. Subproblem 2 : Find pk ∈ X s.t. Lr(u

k,pk; sk) ≤ Lr(u
k, q; sk),

∀q ∈ X.
Step 4. Update the Lagrange multiplier sk+1 = sk+1/2 + r

2 (u
k + pk − f )

3.3 Solution of Subproblem 1

The functional u 	→ Lr(u,p
k−1; sk) can be rewritten as

Φ1(u) :=
r

2
‖ u ‖2L2 +J(u) + (p̃,u)X + C,

where C is a constant. We first compute vk using the following semi-implicit
scheme derived from [9].

v�+1
i =

v� + τ∇(∇ · v�i − p̃i)

1 + (τ/g)
[∑3

i=1 |∇(∇ · v�i − p̃i)|22
]1/2 , i = 1, 2, 3, (3.5)

where τ > 0. With vk computed using (3.5) and the extremality condition we
recover the minimizer of Subproblem 1

ūk
i =

1

r
(∇ · vki − p̃i), i.e. uk

i = fi − pk−1
i +

1

r
(∇ · vki − ski ), i = 1, 2, 3.

3.4 Solution of Subproblem 2

The functional p 	→ Lr(u
k,p; sk) can be rewritten as

Φ2(p) = (λ+ r/2) ‖ p ‖2L2 +(sk + r(uk − f),p)X + C,

where C is a constant. We deduce the solution of the minimization subproblem
in p

pk = −(sk + r(uk − f))/(r + 2λ).

With the results above, we can now present the Uzawa block relaxation algo-
rithms for the TVg + L2 model.

3.5 Uzawa Block Relaxation Algorithms

Algorithm TVL2/UBR2
Initialization. p−1, s0 and r > 0 given.
Iteration k ≥ 0. Compute successively uk, pk and sk as follows.
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Step 1. Set p̃ = sk + r(pk−1 − f) and compute vk with (3.5).

Compute uk

uk
i = fi − pk−1

i +
1

r
(∇ · vki − ski ), i = 1, 2, 3.

Step 2. Update the Lagrange multiplier

sk+1/2 = sk +
r

2
(uk + pk−1 − f).

Step 3. Compute pk

pk = −(sk + r(uk − f))/(r + 2λ)

Step 4. Update the Lagrange multiplier

sk+1 = sk+1/2 +
r

2
(uk + pk − f).

4 Augmented Lagrangian Methods for the TV + L1
g

Model

In this part, we give some elements for the resolution of the TV +L1
g model where

L1
g is a vectorial spatially adaptive data term. The function g(x) is then here

chosen as a vectorial function g(x) = (g1(x), g2(x), g3(x)). The new model TV +
L1
g corresponds to the minimization of the functional (2.2). For this minimization

problem, we apply the same kind of minimization procedure as in the previous
section and as in [8] but, in the development of the solution of subproblem 1, we
have the next change:

v�+1
i =

v� + τ∇(∇ · v�i − p̃i)

1 + (τ/λ)
[∑3

i=1 |∇(∇ · v�i − p̃i)|22
]1/2 , i = 1, 2, 3, (4.1)

where τ > 0.
The algorithm then becomes:

Algorithm TVL1g/UBR2
Initialization. p−1, s0 and r > 0 given.
Iteration k ≥ 0. Compute successively uk, pk and sk as follows.

Step 1. Set p̃ = sk + r(pk−1 − f) and compute vk with (4.1).

Compute uk

uk
i = fi − pk−1

i +
1

r
(∇ · vki − sk

i ), i = 1, 2, 3.

Step 2. Update the Lagrange multiplier

sk+1/2 = sk +
r

2
(uk + pk−1 − f).

Step 3. Compute pk

pki =

⎧⎨
⎩

0 if |ski + r(uk
i − fi)| ≤ gi,

fi − uk
i − 1

r

[
sk − gi

ski +r(uk
i −fi)

|ski +r(uk
i −fi)|

]
if |ski + r(uk

i − fi)| ≥ gi.

Step 4. Update the Lagrange multiplier

sk+1 = sk+1/2 +
r

2
(uk + pk − f).
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5 Numerical Experiments

In the numerical experiments, for the fixed-point algorithm (3.5), the step size is
τ = .125 and the tolerance for the relative error is 1. Numerical experiments not
reported here for space reasons prove that the UBR scheme is robust towards the
choice of the penalty parameter r. In this paper, we provide two main examples
to show the potential of spatially varying regularization and data terms.

5.1 Spatially Varying Regularization Term, the TVg + L2 Model,
for Old Parchments Restoration

In this subsection, we propose to test the impact of the function g within the
framework of parchments restoration. In order to restore the background of these
images while preserving the text, we propose to define a well-adapted g function
in the weighted total variation term. On the basis of several tests, we finally
choose to introduce an information on the vectorial gradient through the use of
a mask function. In order to do so, we first compute the image corresponding to
the norm of the gradient of each channel. We then perform a basic classification of
each gradient image by partitioning its histogram into nbclasses by minimizing
the sum of the class variances. The number of classes was chosen equal to 3
and we pay attention to the minimum class of each gradient image, namely
Cmin(|∇fi|) in order to detect non significant gradients. The proposed mask
function is then the following:

m(x) =

{
αn if x ∈ (Cmin(|∇f1|) ∩ Cmin(|∇f2|) ∩ Cmin(|∇f3|))
α elsewhere

(5.1)

We choose αn = 1 and α = 0.001 in order to uppermost smooth the pixels
of smaller gradients. We then take g(x) = mσ(x) where mσ(x) = Gσ ∗ m(x)
is a slight regularized version of m (σ = 0.05). As far as the removing of non
significant edges is concerned in old parchments, this adjunction of a weighted
TV leads to interesting results that can not be obtained using a classical TV
regularization term. In Figure 1, we show an example of restoration of an old
parchment using g = 1 (Figure 1.(b)) and the function g = mσ(x) (Figure 1.(c)).
The parameter λ was chosen in order to visually obtain the best results (λ = 3
when g = 1 and λ = 0.2 when g = mσ(x)). When choosing g = 1, the parameter
λ is difficult to tune. Indeed choosing a small value for this parameter leads
to a global smoothing of the image and does not allow a preservation of the
characters while choosing a high value does not smooth enough the background.
On the contrary, when using the weighted TV term, the impact of the parameter
λ is less important. We can then choose a small value in order to smooth the
background while preserving the important information.

This first experimental result is here to illustrate the behaviour of the function
g in the weighted total variation term. Further experiments are needed in order
to validate this term for the specific application of old parchments restoration
and analysis. It could also be interesting to test some different space colors than
RGB in order to improve these first results.
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(a) Original image (b) Using g = 1 (c) Using an appropriate g

Fig. 1. Restoration of a parchment (a) using the weighted total variation term with
g = 1 (b) and the function g(x) = mσ(x) (c)

(a) (b) (c)

1.
33.5dB, 96it., λ = 0.9 40.4dB, 46it., λ = 0.2

2.
27.6dB, 114it., λ = 0.7 33.9dB, 65it., λ = 0.2

3.
19.5dB, 759it., λ = 0.5 23.0dB, 245it., λ = 0.2

Fig. 2. (a) : noisy image (20%, 70%, 95%); (b) : restored image using TVg + L1; (c) :
restored image using TV +L1

g (with the associated PSNR, number of iterations and λ)
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5.2 Spatially Varying Data Term, the TV + L1
g Model, for Impulse

Noise Removal

In order to test the potential of such a vectorial varying data term, we first
propose to test it on simulated noisy images where an impulse noise is added
on each color channel. To achieve this, we introduce the vector-valued function
g(x) = (g1(x), g2(x), g3(x)) defined by

gi(x) =

{
0 if x ∈ Ci(f)
1 if not

where Ci(f) designates the set of corrupted pixels in the channel i. In the ex-
periments, we consider that the corrupted pixels correspond to the minimum or
maximum values of the intensity but, in the real case, an adapted noise detec-
tor should be used (see [28] for an interesting bibliography on such detectors).
Figure 2 shows interestingly that the new model outperforms the TVg+L1 model
where g is the function proposed in [8] for salt and pepper noise removal. The
spatially varying data term gives very interesting results even for high levels of
noise that are only handled by very few methods [28].

6 Conclusion

This paper deals with color image restoration using a vectorial adaptation of
the seminal ROF model. An augmented Lagrangian functional is introduced
leading to Uzawa block relaxation algorithms for the minimization of both the
TVg + L2 and the TV + L1

g functionals. Such algorithms are fast and easy to
implement allowing a simple resolution for the minimization of such function-
als. They are also robust towards the choice of the penalty parameter r. Once
the mathematical framework was settled, we propose to test the behaviour of
spatially varying regularization and data terms in the framework of color image
restoration. We first propose to test the impact of the weighted total variation
term through the definition of a new function g that proves to be valuable for
the restoration of old parchments. We use it in order to restore the background
of medieval parchments while preserving the text. We obtain very good results
that need to be completed by further investigations and tests. One problem that
needs to be further studied is the impact of the additional term that appears
when computing the PDE of such a problem. This problem was mentioned in
[28]. This additional term may introduce some oscillating boundaries if the func-
tion g is not smooth enough and must then be further studied and quantified.
A post-processing (smoothing in the direction of the tangent of the gradient)
can also be used to solve this artifact. Secondly, we also investigate the use of
a spatially data varying term where the parameter λ becomes a vectorial local
function. This term can also be solved using our mathematical framework with
only a slight change and leads to very good results for salt an pepper denoising.
We also compare it to an adapted weighted total variation term. In this case,
the spatially varying data term gives better results both visually and in terms of
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PSNR. These first tests need to be further developed for example regarding with
the sensitivity to the parameters and color space. They also demonstrate that
the selection of the point-wise weight function is very important and may lead
to a real improvement compare to the results obtained using a simple TV+Lτ

model. Our on going research is then directed towards a deeper investigation of
such terms notably within the framework of old parchments restoration.
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