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Abstract. The necessity of increasing information density in a given
space motivates the use of more colors in color barcodes. A popular
system, Microsofts HCCB technology, uses four or eight colors per patch.
This system displays a color palette of four or eight colors in the color
barcode to solve the problem with the dependency of the surface color on
the illuminant spectrum, viewing parameters, and other sources. Since
the displayed colors cannot be used to encode information, this solution
comes at the cost of reduced information rate. In this contribution, we
introduce a new approach to color barcode decoding that uses 24 colors
per patch and requires a small number of reference colors to display in
a barcode. Our algorithm builds groups of colors from each color patch
and a small number of reference color patches, and models their evolution
due to changing illuminant using a linear subspace. Therefore, each group
of colors is represented by one such subspace. Our experimental results
show that our barcode decoding algorithm achieves higher information
rate with a very low probability of decoding error compared to systems
that do display a color palette. The computational complexity of our
algorithm is relatively low due to searching for the nearest subspace
among 24 subspaces only.

1 Introduction

Color barcodes are becoming one of the technologies to embed information in
recent years. The information density of conventional 1-D and 2-D barcodes is
much lower than color barcodes in a limited area. The use of colors creates more
symbols that lead to larger data capacity within the same symbol size.

One of the popular color barcodes in the market is HCCB (Microsoft’s High
Capacity Color Barcode) [8]. HCCB uses a grid of colored triangles with four
or eight colors to encode data. The necessity of increasing information density
in a given space encourages the idea of using more colors in color barcodes. For
instance, using 24 colors instead of 8 would increase the information rate by 1.5
times in the same barcode area.

Decoding large number of colors is a challenging task. One of the main prob-
lems is that an observed color patch depends on the surface reflectance and
unknown illuminant spectrums. One way to overcome this problem is to apply a
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pre-processing step such as color constancy operation to compensate with vary-
ing and unknown illuminants ([3], [5], [6], [7]). Another strategy is the clustering
of a number of colors in color space [10]. Modeling the changes of the observed
color due to changing illuminant could also solve this problem [1].

In this contribution, our focus is a solution for decoding the color information
in a barcode. We consider color barcodes that can be decoded under multiple
illuminants with small number of reference patches of known colors, seen under
the same illuminant as the color to be decoded. The use of reference color patches
enables robust decoding with relatively low computational complexity which is
suitable for implementation on a low powered mobile device. Our algorithm
considers each color patch and a set of reference color patches as a group of
color patches, and models their evolution due to changing illuminant using a
linear subspace. Therefore, each group of colors (one color and one or more
reference patches) is represented by one such subspace. When a color barcode is
observed, our algorithm decodes each color independently by building a group
from the color and a set of reference color patches. Then, each group is decoded
by finding the nearest subspace among all subspaces. Our experiments show that
our approach produces higher information rate than existing technology such as
HCCB and the works described in [1] and [8] with a very low probability of
incorrect decoding using small number of reference color patches.

2 Related Work

There are limited numbers of research work in the literature on the topic of
color barcode decoding. The common approach to color barcode decoding (e.g.
[8], [10]) assumes that all N colors that are used to generate a color barcode are
available in the barcode itself. HCCB technology also assumes that all colors in
the palette are available. This makes the decoding task simpler by comparing
the color of the patches in the barcode against the colors of N patches. However,
since the N color patches are not information-carrying patches, the information
rate will be reduced.

The method of Sali and Lax [10] uses a k-means classifier to assign the (R,G,B)
value of a color patch to one reference color. Similarly, the HCCB detection algo-
rithm [8] identifies a set of clusters in color space using mean shift clustering, and
assigns each cluster center to one of the reference colors in a palette, contained in
the barcode itself. These strategies usually work well for the limited number of
colors in a barcode. Color clustering is not guaranteed to work well when many
more colors are used. Moreover, these strategies only work for dense barcodes,
with the number of patches considerably larger than the number of colors N , so
that the attachment of the color palette to the barcode has insignificant impact
on the spatial density of information.

Wang and Manduchi [12] studied the problem of information embedding via
printed color. Their algorithms used one or more reference color patches of known
colors, observed under the same unknown illuminant as the colors to be decoded.
Known reference color patches enable an estimate of illuminant as a parametric
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color transformation between a canonical illuminant and the unknown illumi-
nant. This transformation is used to render the unknown color patch under the
canonical illuminant, which can be decoded using the training data.

Recent work by Bagherinia and Manduchi [1] showed a study of the variation
of small groups of printed colors and modeled their evolution due to chang-
ing illuminant using a low-dimensional linear subspace. Their approach decodes
length k barcode elements of a color barcode, and does not use reference colors.
They showed that by carefully selecting a subset of barcode elements, it is pos-
sible to achieve good information rate at low decoding error probability. Since
their system uses a subset of barcode elements and does not allow the repeat of
colors within a barcode element, maximum information rate for N colors cannot
be achieved. The number of subspaces also increases with the length k of barcode
elements which leads to high computational complexity for large barcodes. Thus,
this approach is not suitable for low powered mobile device implementation.

This contribution builds on the work by Bagherinia and Manduchi [1]. How-
ever, rather than considering groups of k color patches, we concentrate on the
variation of one color patch and r reference patches as a group of color patches
to model their evolution due to changing illuminant.

3 Information Rate and Probability of Decoding Error

The patches in a color barcode are created from a set CN ⊂ C of N color patches
and CM ⊂ C of M reference color patches. A color barcode can be defined as the
juxtaposition of n color bars for information encoding and r reference colors in
any spatial pattern, resulting in a K = n+ r length barcode.

As defined in [1], the information rate R of a barcode (reference colors are not
used) is defined by the logarithm base 2 of the number of different symbol that
can be represented by the barcode and measured in bits per bar. The information
rate for a barcode of K bars and r reference patches is defined as:

R(K, r) =
(
1− r

K

)
log2 N (1)

An approach to color barcode decoding assumes that r reference patches in the
barcode are attached to the barcode. This may allow for more robust decoding.
However, this solution comes at the cost of reduced information rate, since r
reference patches cannot be used to encode information.

Fig. 1 illustrates the information rate for N = 24, K = 120 bars and varying
r from 0 to 24. For example, the information rate of a length 120 barcode that
displays all r = 24 reference colors is 3.67 bits/bar. The information rate using
r = 2 reference colors is 4.51 bits/bar. A color barcode system that uses two
reference colors can pack about 0.84 additional bits per bar (or 100 bits overall)
than systems that use 24 reference colors (r = N). Thus, it is highly beneficial
to use small number of reference colors.

The probability of decoding error P (r) is important to consider for a generic
barcode with N colors and r reference colors. This is defined as the average prob-
ability of decoding error of a color patch over all colors. As described in [1], the
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Fig. 1. The information rate for N = 24, a length K = 120 barcode, and varying r
from 0 to 24 reference colors

probability of decoding error for a barcode of length K, assuming that decod-
ing errors for the individual colors in the barcode are statistically independent
events, is:

PE(K, r) = 1− (1− PE(r))
K (2)

The probability of incorrect decoding grows with the number of bars K in the
barcode. The dependence PE(K, r) on r can be determined experimentally as
described in Sec. 5.

4 Color Barcode Decoding

4.1 Decoding Approach

Let the 3(1 + r)-dimensional vector e = [c, d1, . . . , dr]
T be the measured color

of a surface for information decoding and r reference surfaces (a reference color
group of r colors), where c = [cR, cG, cB]T and dj = [dRj , d

G
j , d

B
j ]

T (j = 1 . . . r)
are (R,G,B) color vectors. A model to describe the observed color of Lambertian
surfaces assumes that the spectra of the surface reflectances and of the illumi-
nants live in finite-dimensional spaces of dimension Nref and Nill respectively
[7]. Hence, the observed group of colors under a given illuminant is equal to

e = Φv (3)

Φ is a 3(1+ r)×Nill full-rank matrix whose entries are a function of the illumi-
nation and reflectance basis vectors as well as of the spectral sensitivities of the
camera assuming Lambertian characteristics of surfaces. v = [v1, v2, . . . , vNill

]T

is a vector of length Nill containing the coefficients of the illuminant with respect
to the chosen basis.

The observed color c of a single surface under a given illuminant is equal
to c = Φcv. The decoding of c would be very difficult if no reference color is
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used. This is due to the fact that Nill ≥ 3 in general ([4], [9]), and the rank
of Φc would be 3 which makes rank(Φc) smaller than Nill. If, however, a color
along with multiple reference colors seen under the same illuminant is decoded
at once, the probability of correct decoding will be higher due to e ∈ R

3(1+r) and
rank(Φ) = min(3(1 + r), Nill). The vector e is constrained to live in a subspace
S of dimension of at most Nill.

Let S be the linear subspaces in R
D spanned by ei over varying illuminant i.

The decoding algorithm for an individual color represented by e begins by mod-
eling the subspaces Sk of N colors (k = 1 . . .N). Similar to the work described in
[1], we have considered two approaches to build these subspaces. In the first case,
the subspaces of suitable dimension D are built from observations under verity
of illuminants via Principal Component Analysis (PCA). The second approach
is based on the diagonal model of color changes, which assumes that each color
channel changes as a result of an illuminant change by a multiplicative factor.
The matrix Φ is formed based on a single color and r reference color patches
under a single illuminant as follows

ΦT =

⎡
⎣
cR 0 0 dR1 0 0 dR2 . . .
0 cG 0 0 dG1 0 0 . . .
0 0 cB 0 0 dB1 0 . . .

⎤
⎦ (4)

The subspace modeling based on diagonal model is less accurate. However, it
allows a fast calibration procedure (since it requires a single image of N colors
and r reference colors under a single illuminant) and is suitable for the situation
when a different camera is used or the colors are printed with a different printer.

Once N subspaces are built, we decode an observed color vector e by assigning
it to the subspace that minimizes the distance to e. The distance is defined as
the distance between e and its projection onto Sk.

4.2 Reference Color and Subspace Selection

To produce a certain PE(r) smaller than desired, one needs to define reference
colors within a set of colors. Selection of r number of reference colors that mini-
mizes the associated PE(r) is computationally very expensive. In particular, the
probability of incorrect decoding for all combinations of r reference colors from
a large set of colors needs to be evaluated. We have considered a suboptimal
greedy technique to reduce the complexity associated with r reference colors se-
lection. Our approach is to insert one reference color at a time to compute the
PE(r) as follows: we select a reference color from the set R1 ⊂ CM that mini-
mizes the PE(r = 1). Then we build a set R2 of groups of two reference colors of
which contain the selected reference color in previous step. Then, we search for
the group (of reference colors) that minimizes the PE(r = 2). We continue this
procedure until r reference colors satisfy the desired PE(r). Basically, for r > 1
we build all possible combinations (Rr) of r length groups of reference colors of
which contain the reference colors selected in the previous steps.

We considered all possible reference colors that could build sets of reference color
groupsRr. We then estimated (via cross-validation over multiple illuminants) the
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probability that the color i (represented by the vector e) is incorrectly decoded as
j. The sum of all these probabilities, divided by the number of colors, gives the
probability of incorrect decoding PE(r) for a given reference color group of length
r. For PCA-based approach, we repeated this procedure for subspace dimensions
from one to five. For each r length reference colors, we selected the subspace di-
mension D that minimizes PE(r) for chosen r reference colors.

Fig. 2 shows the probability of incorrect decoding PE(r) for the number of
reference colors r between one and five and the subspace dimension between one
and five. We select the subspace dimensions 3 and 4 for r = 1, 2 and r = 3, 4, 5
respectively.

Fig. 2. The probability PE(r) of incorrect decoding as a function of the number of
reference colors r and subspace dimension from 1 (white) to 5 (black)

5 Experiments

For our experiments, we printed a colorchecker with 5 × 25 = 125 colors on
paper by a regular printer, uniformly sampled in (R,G,B) color space. Images
were taken of the printed colors with a Canon EOS 350D camera in raw (CR2)
format from zero degree (with respect to the normal to the colorcheckers surface)
under 64 different lighting conditions including indoor and outdoor under direct
sunlight, diffuse skylight with overcast sky, cloudy sky, or under cast shadow,
and various types of artificial light. The color value of each patch was calculated
by averaging over a few hundreds color values within the patch to reduce noise.

We then selected N = 24 color patches using images under all 64 illuminants.
For each illuminant, we used k-means to select 24 colors. Commonly used ini-
tialization methods for k-means algorithm is Random Partition. To make sure
that the k-means clustering selects 24 distinct colors, we run k-means 10 times
with different starting point to select 24 colors with highest occurrences in all
runs. Once we have 24 colors for each illuminant, we selected 24 colors with
highest occurrences among all illuminants. The color of reference patches were
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Fig. 3. The 24 color patches, 5 reference color patches selected for PCA-based and
diagonal model

selected from M = 125 − 24 colors as described in Sec. 4.2. The colors for ref-
erence colors are different than the N = 24 colors since it is desired to build
each vector e with distinctive colors rather than allowing color repetition in the
vector e. Synthetic images of all 24 colors and r = 1 . . . 5 reference color patches
were built from the average color values of the images of the color patches seen
under the 64 representative illuminants. For PCA-based approach, we compute
the probability of incorrect decoding PE(r) for number of reference colors r rang-
ing between one and five as follows. We ran ten rounds of cross-validation, each
time randomly selecting 32 illuminants, learning the subspaces for each vector
e representing a color and r reference patches considered based on its images
under these illuminants, and testing each vector e in turn on 32 of the remaining
illuminants. We count the number of times any color was incorrectly decoded,
and divided the result by the number of test illuminants (32), by the number of
cross-validation rounds (10) and by the number of colors (24). We also tested
the decoding algorithm based on the diagonal model discussed in Sec. 4.1 In this
case, the color subspaces were built from observation of the colors under just one
illuminant. We ran ten rounds of cross-validation, each time randomly selecting
one illuminant (without repetition), training our model on such illuminant and
testing it with vectors e seen under 32 illuminants randomly chosen.

We expanded our experiments to more realistic illumination situations. We
showed the robustness of our algorithm when a color barcode is observed from
different viewing angles under different illuminants. Typically, the colored sur-
faces produced by a color printer are far from being Lambertian. They may
have a strong specular refection component. In the presence of specular refec-
tion, a viewpoint-dependent component with the same color as the illuminant
adds to the perceived color of the surface from diffuse refection [11]. We took
32 test images from our printed colorchecker under four illuminants from mul-
tiple viewpoints ranging from −50 to 50 degrees with respect to the normal to the
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colorcheckers surface and from a constant distance about 1.5 to 2 meter. We ex-
tracted eight images taken under the same illuminant from these 32 test images.
Then, similar to the scatter-plot in [2], we showed the scatter-plot of the nor-
malized values R/(R+G+B) vs. G/(R+G+B) of the color of N = 24 patches.
Under an ideal Lambertian model, the normalized color for a color patch should
be constant regardless of the viewpoint under the same illuminant. The scatter-
plot in Fig. 4 suggests that normalized colors from most of color patches are
scattered. The scattering within each color cluster may be due to the specular
component as a portion of illuminant color is captured along with the surface
color. In particular, a subset of point clusters are oriented towards the white sur-
face point (the white cross in the scatter-plot), whose color is similar to the color
of the illuminant. We also compute the probability of incorrect decoding PE(r)

Fig. 4. The scatter-plot of the normalized color values of N = 24

for number of reference colors r by running ten rounds of cross-validation, each
time randomly selecting 32 illuminants (from 64 training illuminants), learning
the subspaces, and testing on the data of these 32 images.

Fig. 5 shows the probability of decoding error PE(r) and PE(K, r) (for a
K = 120 length barcode, computed using Eq. (2)) for number of reference colors
r using N = 24 colors. We tested the decoding method on the data with zero
viewing angle and the data with different viewing points ranging from −50 to 50
degrees. Both types of subspace modeling (via PCA or via the diagonal model)
are considered.

These results suggest that it is possible to reach high information rate with
a very low probability of decoding error. For example, PCA-based subspace
modeling for r >= 2 , N = 24 colors, and a length K = 120 barcode results in
a probability of zero incorrect decoding of any length of barcode, while allowing
one to encode information at a rate of about 4.51 bits per bar if only two reference
colors are used. In presence of specular reflection, the information rate is 4.43
bits per bar with a probability of zero incorrect decoding if four reference colors
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Fig. 5. Left: the probability of incorrect decoding PE(r) to decode a single color patch
as a function of the number of reference colors r. Right: the probability incorrect
detection PE(K, r) for a length K = 120 barcode versus the information rate compute
using Eq. (1) and (2). ‘∗’: r = 1; ‘◦’: r = 2; ‘�’: r = 3; ‘+’: r = 4; ‘�’: r = 5.
Subspaces learnt via PCA (solid line) over 32 illuminants, and diagonal model (dashed
line). Black line: the algorithm tested on data with zero viewing angle. Red line: the
algorithm tested on data with different viewing points ranging from −50 to 50 degrees.

are used. Using the diagonal model to build the subspaces leads to less accurate
decoding. The probability of decoding error using five reference colors is equal
0.048 at 4.39 bits per bar. The probability of decoding error for smaller barcode
such as K = 60 bars (N = 24 and r = 5) reduces to 0.02 with an information
rate of 4.2 bits per bar using Eq. (2). The subspace modeling based on diagonal
model does not produce promising results in presence of specular reflection.

Decoding each color patch requires finding the nearest subspace in a database
of only 24 elements regardless of the number of reference colors chosen. This
makes this algorithm suitable for implementation on a low powered mobile
device.

6 Conclusions

We introduced a new color barcode decoding approach that requires few reference
colors attached to the color barcode. Our experiments have shown that, by care-
fully selecting a set of reference colors, it is possible to achieve a high information
rate at the low probability of decoding error with relatively low computational
complexity which is suitable for implementation on low powered mobile device.
In the future, we hope to extend our decoding strategies in more realistic situa-
tions such as errors due to color mixing from two neighboring patches, to printed
color drift and fading, or to color barcodes printed from different printers.
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