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Abstract. Identification of illumination is an important problem in
imaging. In this paper we present a new and effective physics-based
colour constancy algorithm which makes use of a novel log-relative-
chromaticity planar constraint. We call the new feature the Zeta-image.
We show that this new feature is tied to a novel application of the
Kullback-Leibler Divergence, here applied to chromaticity values instead
of probabilities. The new method requires no training data or tunable
parameters. Moreover it is simple to implement and very fast. Our exper-
imental results across datasets of real images show the proposed method
significantly outperforms other unsupervised methods while its estima-
tion accuracy is comparable with more complex, supervised, methods. As
well, the new planar constraint can be used as a post-processing stage for
any candidate colour constancy method in order to improve its accuracy.

1 Introduction

Identification of illumination is an important problem in image processing for
digital cameras, for both still images and video. In a scene consisting of di-
electric materials (e.g., plastics, and indeed most non-metals) there is typically
substantive specular content. This does not necessarily mean extremely bright
mirror-like reflection, but can consist for example of the glint of light reflected
from blades of grass, or the sheen of light reflected from a desk surface. For
non-metals, this very common specular content is an important indicator of the
colour of the lighting in a scene.

Many colour constancy algorithms have been proposed (see [1, 2] for an
overview). The foundational colour constancy method, the so-calledWhite-Patch
or Max-RGB method, estimates the light source colour from the maximum re-
sponse of the different colour channels. Another well-known colour constancy
method is based on the Grey-World hypothesis, which assumes that the aver-
age reflectance in the scene is achromatic. Grey-Edge is a recent version of the
Grey-World hypothesis that says: the average of the reflectance differences in a
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scene is achromatic [3]. The Gamut Mapping algorithm, a more complex and
more accurate algorithm, was introduced by Forsyth [4]. It is based on the as-
sumption that in real-world images, for a given illuminant one observes only a
limited number of colours. Several extensions have been proposed.

Lee [5] proposed a method which uses specularity to compute illumination
by using the fact that in the CIE chromaticity diagram the coordinates of the
colours from different points from the same surface will fall on a straight line
connected to the specular point. This is the case when the light reflected from
a uniform surface is an additive mixture of the specular component and the
diffuse component. This seminal work initiated a substantial body of work on
identifying specular pixels and using these to attempt to discover the illuminant
(e.g. [6, 7]). Although these works are theoretically strong, none of them reports
performance over real world datasets of images with and without specularities.

In this paper, we set out a new discovery, consisting of a planar constraint
that must be obeyed, in a certain standard model of reflectance, by specular
or near-specular pixels in an image. The new feature involved we call the Zeta-
image,1 and below we show that this feature is tied to the information-theoretic
concept of applying one distribution to generate bitstring codes for another;
here we view chromaticity components, which add to 1, in the role of probabil-
ities. We present a novel physics-based colour constancy algorithm based on a
log-relative-chromaticity planar constraint, which requires no training data or
tunable parameters. It is easy to implement and very fast compared to more
complex colour constancy methods such as gamut mapping. Our experimental
results over three large datasets of both laboratory and real world images show
that the proposed method significantly outperforms other unsupervised methods
while its accuracy of estimation is comparable with more complex methods that
need training data and tunable parameters.

2 Relative Chromaticity Near Specular Point

2.1 Image Formation Model and Relative Chromaticity

Let the RGB 3-vector at each pixel be denotedR , with components Rk, k = 1..3.
Let the RGB 3-vector for the light itself as seen by the camera be ek, and let the
3-vector for the reflectance at a pixel as seen by the camera, under equi-energy
white light, be sk. Now in a product-of-vectors simple model [8] we approximately
have the matte (“body”, i.e., non-specular) RGB value at that pixel equal to

Rk � σskek/qk (1)

where σ is shading. In the standard Lambertian model for matte shading, σ
equals lighting-direction dotted into surface normal. Here, qk is a triple giving
the overall (integrated) camera sensor strength [9].

If we also consider an additional specular component, this equation becomes

Rk � σskek/qk + βek (2)

1 Patent applied for.
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where β represents the amount of specular component at that pixel. The value
of β for a pixel will depend upon the lighting direction, the surface normal,
and the viewing geometry. Here, the specular component βek is simply assumed
to be the same colour as the light itself, in a Neutral Interface Model [5] for
dielectrics. For purposes of discovering properties of this equation, let us assume
for the time being that β is simply a constant — in actuality it will be a scalar
property of each pixel and this issue is further discussed below in §2.3. Let us
lump values σsk/qk into a single quantity and for convenience call this simply
sk. Now we have

Rk = skek + βek (3)

The chromaticity ρk is colour without magnitude, in an L1 norm: ρ =
{R,G,B}/(R+G+B), so here we have

ρk =
skek + βek

∑3
j=1(sjej + βej)

(4)

Let the chromaticity of the light itself be denoted ρek = ek/
∑

j ej . Now here
we wish to examine the properties of the Relative Chromaticity, which we define
to be the chromaticity divided by the chromaticity of the light, ρek. Let us call
this quotient chromaticity χk, so that

χk =
ρk
ρek

=
skek + βek

∑3
j=1(sjej) + β

∑3
j=1 ej

·
∑3

j=1 ej

ek
(5)

where all divisions are taken to be component-wise. Dividing by the light chro-
maticity is the main innovative step in this paper: it is an ansatz that we claim
will bear fruit by generating a constraint on the illuminant colour.

For convenience, let E ≡ ∑3
j=1 ej = |e | where | · | is the L1 norm. Then we

arrive at

χk =
sk + β

(
∑

j sjej)

E + β
(6)

So, for a pixel with no matte component sk but only a purely specular compo-
nent, we would have χk ≡ 1 for all 3-vector elements k = 1..3.

2.2 Log-Relative-Chromaticity and Planar Constraint

Next we show that in fact log values are preferable, in that a simple planarity
constraint falls out of the formulation once we move to the log domain.

Let us define a new quantity, ψ , which is the logarithm of the ratio χ defined
above: we call this the Log-Relative-Chromaticity:

ψk = log(χk) = log (ρk/ρ
e
k) (7)

Now near a specular point, we can take the limit as (1/β) → 0. Let α = 1/β.
Then in the limit as specularity increases, ψ goes to

ψk = limα→0 log
{
(αsk + 1) /

(
α
∑

j(sjej)/E + 1
)}
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Using a Maclaurin series,

ψk = α

(

sk −
∑

j sjej

E

)

+O
(
α2

)
(8)

Omitting O
(
α2

)
, we note by inspection that the quantity ψk is orthogonal to

the illuminant vector:
∑

k

ψk ek ≡ 0 , so also
∑

k

ψkρ
e
k = 0 (9)

Therefore we have a planar constraint on image pixels that are near-specular:

Planar Constraint: For near-specular pixels, Log-Relative-Chromaticity values
are orthogonal to the light chromaticity.

Note that in eq. (8) above we have expressed this orthogonality in a different
way than the usual, Euclidean-norm based calculation of the part of the vector
s that is orthogonal to vector e , viz. (sk − s · ê êk) for normalized light vector
ê . Nevertheless, it is easy to verify that eq. (9) does indeed hold. Eq. (8) means
an L1-based projection onto the plane orthogonal to the light.

2.3 Varying Specular Factor β

The fact that specular scalar factor β is not a constant makes no difference to
the argument: for near-specular pixels any value of β still leads to quantity ψk

lying in the plane orthogonal to the illuminant.

3 Planar Constraint Method

Here we begin construction of an algorithm by considering first a simple search
method as motivation, and then stating an analytic solution.

3.1 Global Search

The planar constraint suggests that the dot product for near-light-colour (e.g.,
specular) pixels is minimized for the correct illuminant. This points to a useful
descriptor for finding the specular point.

Suppose we were to assume that for any candidate illuminant the lowest 10-
percentile, say, of dot-product values (9) could be near-specular pixels. Now,
to find the correct illuminant, we need to minimize dot-product values (9) over
candidate illuminants for those lowest 10-percentile pixels. Thus an optimization
can be stated as follows:

Define the Zeta-image ζ as the dot-product of the log-relative-chromaticity ψ ,
eq. (7), with a putative light direction:

ζ = −ψ · ρ e = − log(ρ /ρ e) · ρ e (10)
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Minimize : minρ e I =
∑
ψ ∈Ψ0

|ζ|
subject to

∑3
k=1 ρ

e
k = 1 , 0 < ρek < 1 , k = 1..3 (11)

where Ψ0 is the set of pixel dot-product values (9) with the candidate illuminant
chromaticity ρ e that are in the lowest 10-percentile.

The meaning of eq. (11) is that we first carry out a search, over possible
illuminant chromaticities ρ e. This can be phrased as either an optimization-
based approach or, as here, a simple hierarchical grid search. Then we adopt a
heuristic that says that the lowest 10-percentile of values of dot-products with
the candidate illuminant could be specular or in general illuminant-coloured. For
these pixels we calculate the sum of absolute values of dot-products and take as
the best candidate light that which delivers the minimum sum.

Fig. 1(a) shows an input image, and Fig. 1(b) shows a boolean map of the low-
est 10-percentile of dot-product values (9) with the correct illuminant chromatic-
ity of that image. In contrast, if we show the lowest 10-percentile of dot products
with the chromaticity of an incorrect light, where ψ values are constructed using
that incorrect light, the boolean map identifying putative specular/light-coloured
pixels is as displayed in Fig. 1(c). We see that using the correct light produces
a much more plausible map of possible pixels that will help identify the light.

The float-valued Zeta-image is displayed in Fig. 1(d). We show next that we
can directly use the Zeta-image to analytically find the correct illuminant.

3.2 Analytic Solution

Having motivated the method, we now state an analytic solution that in fact
produces excellent results and is very simple and fast. Suppose we identify a
possible set Ψ0 of specular pixels by any convenient method — e.g., we could
simply take the top 5% of brightness.

Let the number of bright pixels be N . Then our analytic solution is as follows:
Theorem: Up to an L1 normalization, the light colour is given by the
geometric mean

ρek = g(ρ k) ≡
(∏N

i=1 ρ
i
k

)1/N

, k = 1..3 (12)

(a) (b) (c) (d)

Fig. 1. (a): Image taken under measured illuminant. (b): Light-coloured pixels iden-
tified using planar constraint, when correct illuminant is chosen. (c): Putative light-
coloured pixels for incorrect illuminant. (d): Analytic Zeta-image (float, 1-intensity).
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To prove this, let us first solve an auxiliary optimization replacing (11). For
physical lights, we expect ζ from eq. (10) to be non-negative, so [with no absolute-
value bars as in I in eq. (11)] we first solve

minρ e

∑
i ζi + λ (

∑3
k=1 ρ

e
k − 1) (13)

where i = 1..N ranges over the N pixels in ψ ∈ Ψ0, and λ is a Lagrange multi-
plier enforcing that ρ e is a chromaticity. Taking partial derivatives with respect
to ρek we have the normal equations

−∑
i

[
log

(
ρik

)− log (ρek)− 1
]
+λ=0,with solution ρek = g(ρ k)·exp(−(N+λ)/N).

The meaning of (13) then is: The planarity constraint yields the geometric
mean of the chromaticities as the solution for the light, up to trivial
scaling of the L1-norm.

However so far we have omitted absolute value bars, with a full optimization
minimizing I =

∑
i |ζi|. We now observe that the form (10) formally has the

structure of the Kullback-Leibler Divergence from information theory, in that
chromaticities for image, ρik, and light, ρek all add to unity:

∑3
k=1 ρk = 1. We are

minimizing
∑N

i=1[
∑3

k=1 −ρek log(ρik/ρ
e
k)], which has the K-L structure except

that instead of summing over probabilities for symbols we are here summing
over colour-channels. Thus each dot product (the sum over k at each pixel)
is necessarily nonnegative since it represents the extra bits required to code
samples from ρek when using a code based on ρik. Hence we can simply consider
the minimization (13), with solution (12) up to scaling. ��
As a final step, we calculate a final value for ρek by trimming pixels to the least-
10% values of the Zeta-image ζ and recalculating the geometric mean (12).

Areas of images that are specular tend to be bright. According to our theory
the geometric mean of pixels in these bright (generally, specular) regions is the
optimal estimate for the illuminant. Our insight is in contradistinction to the
work of Choudhury and Medioni [10] and Funt and Shi [11] which proposed
finding the max after a local mean calculation (e.g. after local blurring). In the
presence of specular highlights we instead claim that illuminant estimation is the
mean of the max, not the converse. Indeed, using the correct ordering is crucial
(a fact borne out by our experiments reported below).

3.3 2nd Algorithm: Planar Constraint Applied as Post-processing

Suppose we have an estimate ρ e� of the correct illuminant, from any colour
constancy algorithm. If our estimate is indeed near the correct illuminant we can
then identify as near-specular pixels those whose absolute value of dot-product
eq. (9) with the candidate light chromaticity falls in the lowest 10-percentile,
say (i.e., nearest to zero). Forming a Singular Value Decomposition of ψ values
for those pixels determines the best-fit plane. Within the model presented here
that normal should be close to the illuminant chromaticity in direction. Because
of the additional evidence brought to bear by eq. (9) we expect the estimate to
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improve. If instead the illuminant estimate is wrong, then we have found that
the above SVD step will almost always not change it much and no harm is done
by carrying out this post-processing step. We carry out

ψk = log
(

ρk

ρe∗
k

)
, k = 1..3; Ψ = ψ Tρ e� ;

ψ (Ψ0) = SVD(ψ (Ψ0)) = U diag(d )V T ;
ρ e = V 3/|V 3| ; success = (d3 small)&(ρ e � ρ e�)

(14)

where ρ e� is the estimate of the illumination provided by a colour constancy
method, Ψ0 is the lowest 10-percentile of Ψ , and ρ e is the estimate of the illu-
mination based on the planar constraint.

The meaning of eq. (14) is that, for any estimate ρ e� of the light chromaticity
ρ e, if the model (9) is obeyed around the light point then SVD should produce
an estimate of the light that agrees with ρ e�.

We demonstrate below that this planar constraint does indeed improve the
estimate of ρ e, verifying the suitability of the plane constraint applied as a
post-processing step, for any candidate colour constancy algorithm. In the next
section we will demonstrate the substantial improvement delivered by this simple
planar constraint when added to each of several well-known colour constancy
algorithms as a post-processing step.

4 Experiment Results

4.1 Datasets

We apply our proposed method to three different real-image datasets [12–14]
and compare our results to other colour constancy algorithms.

Our first experiment uses the Barnard dataset [12], denoted the SFU Labora-
tory dataset, which contains 321 measured images under 11 different measured
illuminants. The scenes are divided into two sets as follows: minimal specularities
(22 scenes, 223 images – i.e., 19 missing images); and non-negligible dielectric
specularities (9 scenes, 98 images – 1 illuminant is missing for 1 scene).

For a more real-world (out of the laboratory) image experiment we used the
re-processed version of the Gehler colour constancy dataset [15], denoted the
ColorChecker dataset [13]. This dataset consists of 568 images, both indoor and
outdoor. The illuminant ground truth for these images is known because each
image has a Macbeth ColorChecker placed in the scene. The ColorChecker is
masked off in tests.

Ciurea and Funt [14] introduced the GreyBall dataset, which contains 11346
images extracted from video recorded under a wide variety of imaging conditions.
The images are divided into 15 different clips taken at different locations. The
ground truth was acquired by attaching a grey sphere to the camera, displayed
in the corner of the image. This grey sphere must be masked during experiments.
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4.2 Previous Methods

To compare, we use the standard well-known colour constancy methods: White-
Patch, Grey-World, and Grey-Edge implemented by [3]. For Grey-Edge we use
optimal settings, which differ per dataset [16] (p = 7 , σ = 4 for the SFU
Laboratory dataset and p = 1, σ = 6 for the ColorChecker dataset). We also use
the result provided by Gijsenij and et al. [17] for pixel-based gamut mapping,
using the best general gamut mapping setting, which is for 1st-jet as reported
in [17] (although we could not precisely match their exact results using the code
they released). For other methods we use results as provided by Gijsenij [2, 16].

For methods which need training data, such as the gamut mapping meth-
ods, in the SFU Laboratory dataset 31 images (all images recorded under the
syl-50MR16Q-illuminant) were used for computation of the canonical gamut,
and subsequently these were omitted from the test set. For the ColorChecker
dataset, three-fold cross-validation was used to learn the canonical gamut (with
the folds as well as the ground truth supplied with the original dataset). Testing
for supervised methods is as described in [2], §VII-A.

4.3 Post-processing

Table 1 shows the accuracy of the plane constraint eq. (14) in §3.3 as a post-
processing step applied to the results of each of well-known colour constancy
algorithms, in order to improve the estimate.

Table 1. Median of angular errors for well-known colour constancy algorithms for the
SFU Laboratory [12] dataset and ColorChecker dataset [13], plus result after post-
processing with planar constraint eq. (14) for each colour constancy algorithm

Method SFU Lab. ColorChecker

White-Patch 6.5◦ 5.7◦

White-Patch + Planar Con. 5.1◦ 4.4◦

Grey-World 7.0◦ 6.3◦

Grey-World + Planar Con. 5.0◦ 4.3◦

Grey-Edge 3.2◦ 4.3◦

Grey-Edge + Planar Con. 2.7◦ 3.8◦

4.4 Global Search and Analytic Solution Experiment

Table 2 indicates the accuracy of the proposed methods for the SFU Labo-
ratory dataset [12], the ColorChecker dataset [13] and the GreyBall dataset
[14], in terms of the mean and median of angular errors, for several colour con-
stancy algorithms applied to these datasets. For those methods which need data-
dependent tunable parameters, we utilize optimal parameters for their dataset.
For an overview of results of different algorithms on these datasets refer to [2, 16].
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To our knowledge, for the SFU Laboratory dataset the Planar Constraint
Search eq. (11) does best in terms of median angular error compared to any
reported colour constancy method, even those needing training data. We do
note that for this dataset the Planar Constraint Search eq. (11) is not the best
for the ColorChecker dataset, with Gamut Mapping methods performing better.
However, both Planar Search and the Analytic method of §3.2 (Geomean) do as
well or better than the other relatively fast methods for the GreyBall dataset,
and are only bested by the much more complex method [18].

Run-times average 5.2s for Planar-Constraint Search and 415ms for the An-
alytic method, compared to 617ms for the GreyEdge algorithm and 63.2s for
1st-Jet Gamut Mapping, operating on the SFU Laboratory dataset using (un-
optimized) Matlab.

Table 2. Angular errors for several colour constancy algorithms for SFU Laboratory
dataset [12], ColorChecker dataset [13] and GreyBall dataset [14]

Dataset SFU Labratory Color Checker Gray Ball
Methods Median Mean Median Mean Median Mean

White Patch 6.5◦ 9.1◦ 5.7◦ 7.4◦ 5.3◦ 6.8◦

Gray World 7.0◦ 9.8◦ 6.3◦ 6.4◦ 7.0◦ 7.9◦

Gray Edge 3.2◦ 5.6◦ 4.5◦ 5.3◦ 4.7◦ 5.9◦

Bayesian [15] - - 3.5◦ 4.8◦ - -
Gamut Mapping 2.3◦ 3.7◦ 2.5◦ 4.1◦ 5.8◦ 7.1◦

Gamut Mapping 1jet [17] 2.1◦ 3.6◦ 2.5◦ 4.1◦ 5.8◦ 6.9◦

Natural Image Statistics - - 3.1◦ 4.2◦ 3.9◦ 5.2◦

Planar Constraint Search 1.9◦ 4.3◦ 2.8◦ 4.1◦ 4.6◦ 5.9◦

Geomean 2.1◦ 6.2◦ 2.7◦ 4.2◦ 4.7◦ 5.8◦

5 Conclusions

In this paper we present a novel physics-based insight regarding a plane con-
straint that obtains for log-relative-chromaticity values near the illuminant point
(for white surfaces, or specularities in the neutral-interface model). This insight
provides a useful and very simple method for identifying the illuminant chro-
maticity. Experiment results over datasets consisting of laboratory images and
of real-world images demonstrate that the proposed method significantly outper-
forms other unsupervised methods while its accuracy of illuminant estimation
is comparable with the best (supervised) methods but much faster. As well, the
plane constraint can also be brought to bear to improve estimates provided by
other illuminant estimation algorithms, in a post-processing step; experimental
results indicate that estimate errors can be reduced by some 15 percent by this
simple and very fast mechanism.
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