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Abstract. This paper proposes a method for illumination-invariant rep-
resentation of natural color images. The invariant representation is de-
rived, not using spectral reflectance, but using only RGB camera outputs.
We suppose that the materials of target objects are composed of dielectric
or metal, and the surfaces include illumination effects such as highlight,
gloss, or specularity. We preset the procedure for realizing the invari-
ant representation in three steps: (1) detection of specular highlight, (2)
illumination color estimation, and (3) invariant representation for re-
flectance color. The performance of the proposed method is examined in
experiments using real-world objects including metals and dielectrics in
detail. The limitation of the method is also discussed. Finally, the pro-
posed representation is applied to the edge detection problem of natural
color images.

Keywords: Illumination-invariant, color image, highlight detection,
spectral reflectance estimation.

1 Introduction

Color information observed from object surfaces provides crucial information
in computer vision and image analysis which include the essential problems of
feature detection, image segmentation, object recognition, and image retrieval.
However, in real-world applications there are various illumination factors that
can affect the appearance of color images captured from object surfaces. The
captured images do not only depend on surface-spectral reflectances and illu-
minant spectrum, but also include reflection effects such as shading, gloss, and
highlight, which mainly depend on illumination geometries and surface materi-
als. Therefore, image representations invariant to shading, shadow, lighting, and
specularity have been proposed for color images [1–4] and for spectral images
[5, 6] so far in several ways. However, most of the illumination-invariant methods
used the standard dichromatic reflection model by Shafer [7]. This model is valid
for such limited materials of inhomegeneous dielectrics as plastics and paints.
It should be noted that there are metallic objects in real-world scenes, which
cannot be described by the standard dichromatic reflection model.
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In our previous studies, we proposed an invariant representation for a vari-
ety of real-world objects including metals and dielectrics [8]. We showed that
the normalized surface spectral reflectance by the minimum reflectance was in-
variant to illumination effects and the representation was effective to spectral
imaging applications [9]. However, the method requires an expensive and special
measurement device such as a spectral imaging system and a standard white
reference. Furthermore, long measurement time is necessary due to acquisition
of the high-dimensional spectral data.

The present paper proposes a method for illumination-invariant representa-
tion of natural color images captured by an off-the-shelf RGB camera, and its
application to image processing. The illumination-invariant representation of
spectral reflectance is not available directly for this problem because the illumi-
nant spectrum is unknown. We derive the invariant representation by not using
spectral reflectance, but using only three sensor outputs. Estimation of illumi-
nation (light source) color is required separately. We suppose that the materials
of target objects are composed of dielectric or metal, and the surfaces include
illumination effects such as highlight, gloss, or specularity. We propose an algo-
rithm for realizing the invariant representation for color images in three steps:
(1) detection of specular highlight, (2) illumination color estimation, and (3)
invariant representation for object color.

2 Invariant Representation for Spectral Reflectances

The illuminant-invariant representation for surface-spectral reflectances can be
derived from the standard dichromatic reflection model for dielectric and the ex-
tended reflection model for metal [8]. The spectral reflectances of object surfaces
in a scene are observed by specific devices such as a spectral imaging system, a
standard white reference, and a spectroradio/photometer. The typical imaging
system consists of a liquid crystal tunable (LCT) filter and a monochrome cam-
era. Then it is found that the normalized surface-spectral reflectances by the
minimum reflectance among the observed spectral reflectances are invariant to
highlight, shading, surface geometry, and illumination intensity. The invariant
representation for spectral reflectance is described as

S′(θ, λ) =
S(θ, λ) −min{S(θ, λ)}√∫ 700

400 (S(θ, λ)−min{S(θ, λ)})2dλ
, (1)

where S(θ, λ) is the spectral reflectance function of the wavelength λ, observed
in the range of a visible wavelength [400, 700 nm], and the geometric parameters
θ, including the direction angles of the viewing angle and the phase angle. For
precise spectral representation, spectral images are usually captured at equal
interval of 5nm or 10 nm in the visible range. The imaging system using a LCT
filter takes more than 150 second to capture 31-band images at 10 nm interval.
Therefore, use of expensive devices and long measurement time are bottleneck
towards practical use.
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3 Principle of Invariant Representation for Color Images

3.1 Dichromatic Reflection Models

The standard dichromatic reflection model suggests that light reflected from the
surface of an inhomogeneous dielectric object is composed of interface reflection
and body reflection.

Let CS =
[
C

(R)
S , C

(G)
S , C

(B)
S

]T
be a 3-D column vector representing the red,

green, and blue sensor responses of a color imaging system. The sensor outputs
can be expressed as

CS = mICI +mBCB, (2)

where the vectors CI and CB are the color vectors representing, respectively,
the interface and body reflection components of the color signal reflected from
the object. The weights mI and mB are the geometric scale factors.

The standard model incorporates the neutral interface reflection (NIR) as-
sumption which states that the interface reflection component is coincident with
the color of light source. This allows Eq.(2) to be written as

CS = mICL +mBCB, (3)

where CL is a constant color vector of light source. It is shown that this ref
lection model is valid for a variety of natural and artificial dielectric objects
includi ng plastic and paint.

Metal is a homogeneous material that indicates essentially different reflection
properties from the dielectric materials. It consists of only interface reflection
with the Fresnel reflectance. So, if the surface is shiny and stainless, the body
reflection component is negligibly small. A sharp specular highlight is observed
only at the viewing angle of the mirrored direction. Thus the surface reflection
depends on the incident angle of illumination.

Tominaga [10] shows that the spectral reflection of metal surface can be ap-
proximated by a linear combination of only two interface reflection components.
This type of surface reflection is called the extended dichromatic reflection model.
The color model can be expressed as

CS = mI1CI1 +mI2CI2, (4)

where the first term in the right hand side corresponds to the specular color
component at the normal incident and the second corresponds to the grazing
color component at the horizontal incident. It is noted that surface-spectral
reflectance is whitened at the grazing angle. Therefore, the observed color vector
can be expressed in a linear combination of the metal color at the normal incident
and the light source color CL as follows

CS = mI1CI1 +mI2CL. (5)
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3.2 Illuminant-Invariant Representation

We briefly explain an illumination-invariant representation, which is limited to
the standard dichromatic reflection model for inhomogeneous dielectric objects,
and then extend the invariant representation for all materials including dielectric
and metal. We focus on the 3-D RGB-space. Let us consider that illumination

is not white but colored without C
(R)
L = C

(G)
L = C

(B)
L . Let ĈL be an estimate

of the illumination color vector obtained in a separate way. Then the influence
of illumination color is reduced from the sensor outputs as

ĈS = CS/ĈL, (6)

where the division “/” is done in element-wise operation. The above equation
means the sensor output for the same object surface under a standard white
illumination and the transformed color ĈS is named “reflectance color” in this
paper. With a reliable estimate ĈL, the standard reflection model in Eq.(3)
allows Eq.(6) to be written in the following form

ĈS = mII+mB(CB/ĈL), (7)

where I is a unit vector with [1/3, 1/3, 1/3]T . Thus the sensor vector ĈS has a

constant specular reflection component. Let ĈB = CB/ĈL be the body color
normalized by the light source color, which means the object color observed
under white illumination (canonical color). Then, subtraction of one color com-
ponent from another component provides a representation independent of the
specular reflection component as follows

Ĉ
(R)
S − Ĉ

(G)
S = (mI +mBĈ

(R)
B )− (mI +mBĈ

(G)
B ) = mB(Ĉ

(R)
B − Ĉ

(G)
B ), (8)

where the geometric weighting coefficientmI is eliminated. In this case, the ratio
of two subtractions between color components can be illumination-invariant,
that is, invariant to highlight, shading, and surface geometry by eliminating the
remaining weighting coefficient mB.

Ĉ
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S − Ĉ

(G)
S

Ĉ
(G)
S − Ĉ

(B)
S

=
mB(Ĉ

(R)
B − Ĉ

(G)
B )

mB(Ĉ
(G)
B − Ĉ

(B)
B )

=
Ĉ

(R)
B − Ĉ

(G)
B

Ĉ
(G)
B − Ĉ

(B)
B

. (9)

Next, we consider the image sensor outputs for a metal object. In a similar way,
the normalization of Eq.(6) is applied to the extended reflection model Eq.(5).
We obtain

ĈS = mI1(CI1/ĈL) +mI2I. (10)

Note that, Eq.(10) for the extended reflection model is the mathematically same
fashion as Eq.(7) for the standard model, although the two equations have dif-
ferent physical meaning. Therefore, we derive a unified invariant representation
for all materials including dielectric and metal. In fact, an invariant equation for
metal is derived from Eq.(10) with ĈI1 = CI1/ĈL as

Ĉ
(R)
S − Ĉ

(G)
S

Ĉ
(G)
S − Ĉ

(B)
S

=
mI1(Ĉ

(R)
I1 +mI2)− (mI1Ĉ

(G)
I1 +mI2)

mI1(Ĉ
(G)
I1 +mI2)− (mI1Ĉ

(B)
I1 +mI2)

=
Ĉ

(R)
I1 − Ĉ

(G)
I1

Ĉ
(G)
I1 − Ĉ

(B)
I1

. (11)
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where the geometric weighting coefficients mI1 and mI2 are eliminated. We note
that the operation of Eq.(11) results in an equivalent operation to Eq.(9), that
is invariant to highlights, shading, and geometries.

4 Procedure for Invariant Representation

4.1 Detection of Specular Highlight

It is well-known that specular highlight is useful for illuminant estimation be-
cause the spectral reflectance of the interface reflection component is constant
over the visible range and the color vector is coincident with illumination color
as in Eq.(3). So far, several methods were presented for detecting bright specular
highlights on the observed object surfaces (e.g., see [11]). However, note that this
illuminant estimation method is available for dielectrics at any incidence angle
of illumination, but available for metals at a limited angle with incidence near
the grazing angle.

In this paper, we use a highlight detection method based on variable luminance
thresholding. First, we calculate the luminance value from the captured RGB
image at every pixel and make a luminance histogram for the entire image.
Second, highlight candidates are extracted using a single threshold value, which
corresponds to the luminance at a clear valley in the distribution curve of the
luminance histogram. Third, the extracted candidate areas are labeled based on
connectivity of pixels. If the connected pixel count is small, the area is eliminated.
Then the connected areas with enough pixel counts are reserved as the highlight
areas. Fourth, each highlight area is narrowed by increasing the threshold value,
in order to determine precisely the highlight area. The above process is repeated
for the respective target regions.

It should be noted that the detection algorithm is very simple, although the
detection accuracy is not so high. However, the detection of a few high lights
is enough for estimating the illumination color. Therefore, an accurate detec-
tion algorithm is not necessary for this purpose. We verified that this detection
algorithm was effective empirically.

4.2 Illumination Color Estimation

Considering the dichromatic reflection property, the image data in each detected
highlight area of object surfaces are projected onto a 2-D space using two prin-
cipal components by [

ξ1
ξ2

]
=

[
VT

1

VT
2

]
CS (12)

whereV1 andV2 denote the first and second principal component vectors, which
are computed from the image data set {CS} belonging to the highlight area. A
histogram of the projected 2-D image data (ξ1, ξ2) consists of two clusters for
the specular reflection component and the diffuse reflection component accord-
ing to the dichromatic reflection model. Then, the cluster of specular reflection
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component indicating the light-source color is extracted to estimate illuminant.
Note that the histogram is divided into two linear clusters. Then, the specular
cluster corresponds to highlight pixels by the specular reflection.

If the specular highlight area is much brighter than the matte area, the linear
highlight cluster is much longer than the linear cluster of the diffuse component,
so that the highlight cluster is regarded as a single linear cluster. In this case, the
first principal component vector of the highlight cluster corresponds to the di-
rectional vector representing the illumination. The illumination color vector can
be recovered by extracting the first principal component vector of the highlight
cluster and transforming it inversely into the original 3-D color space.

Let (ξ̂1, ξ̂2) be the directional vector extracted from the specular highlight

cluster. Then the illumination color vector ĈL is estimated as follows:

ĈL = ξ̂1V1 + ξ̂2V2. (13)

If the object color is similar to the illumination color, the estimation accuracy
may decrease.

4.3 Invariant Representation for Reflectance Color

We can generalize the invariant expressions in Eq.(11) to a stable expression
based on the subtraction between any color component and the minimal com-
ponent. The generalized representation for the reflectance color ĈS is given as

Ĉ′(i)
S =

Ĉ
(i)
S −min{Ĉ(R)

S , Ĉ
(G)
S , Ĉ

(B)
S }√∑

j∈{R,G,B}
(
Ĉ

(j)
S −min

{
Ĉ

(R)
S , Ĉ

(G)
S , Ĉ

(B)
S

})2
. (14)

This representation is effective in the sense of measurement and computation
time.

5 Experiments

Figure 1(a) shows an experimental scene, including a metal object of copper and
two dielectric objects of ceramic (cup) and plastic (frog), which are illuminated
with the light source of an incandescent lamp. The color images were captured
using a Canon 5D Mark II digital camera. We assume that the specular highlight
pixels are not clipped. The image with 445×273 pixels in Fig.1 (a) was analyzed.

First, four areas surrounded by yellow rectangles in Fig.1 (a) are the detection

results of specular highlight areas. Second, the illumination color vector ĈL

was estimated at each decected highlight region by the principal component
analysis of highlight clusters in 2D histogram of these areas, as shown in Sec.4.2.
Then the estimated color vectors were averaged. The estimated illumination color
vector was then compared with a direct measurement using a standard white
reference. A fairly good coincidence between the estimate and the measurement
was obtained with the RMSE of 0.044. Figs. 1(b) and 1(c) show the surface
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color image corrected from the observed image using the white reference and
the surface color image corrected using the estimated illumination color vector,
respectively. These corrections were done by element-wise division as indicated
in Eq.(6). These results suggest that the influences of illumination color are
reduced in the surface color images corrected using the estimated illumination
color vector ĈL.

Fig. 1. Color image correction: (a) observed color image and detected highlight regions;
(b) corrected image using the white reference; (c) corrected image using the estimated
illumination color vector

Figure 2(a) depicts a 3-D view of a single channel image (R channel) for
the small rectangular area including metal and dielectrics. That is, the figure
represents the R component of reflectance. Note that the reflectance color image
has the influences of shading and specularity. In contrast, 2(b) shows the 3-D
view of the illumination-invariant representation for the same part at the R-
channel. Note that all shadows and highlights disappear from the original color
image, so that the invariant image is composed of only the reflection component
inherent to each object surface.

It is obvious that the proposed invariant method for color images is simpler
and faster than the invariant method for spectral images in Ref. [8]. However,
the proposed method based on color images has a limitation. It is the problem
of metamer. For instance, our invariant representation may become the same
between two object surfaces, even if those are different spectrally. Figure 3(a)
shows a test scene, which has two plastic objects with similar object colors but
slightly different surface spectral reflectances as shown in Fig. 3(b). Figures 4(a)
and 4(b) show the invariant representations using the spectral image and the
color image, respectively. Figures 4(c) and 4(d) shows their region classification
results using the normalized cut approximated by the Nyström method. Two
objects are segregated in Fig. 4(c) and not segregated in Fig. 4(d), although
illumination effects disappear from both objects. An additional processing may
be required for such an object classification.
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Fig. 2. Illumination-invariant evaluation for a natural color image. (a) 3-D view of
the component image at the R-channel; (b) 3-D view of the illumiantion-invariant
representation for the same part at the R-channel.
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Fig. 3. A test scene. (a) original color image. (b) Surface-spectral reflectances for two
plastic objects in (a).

(a) (b) (c) (d)

Fig. 4. Experimental results for Fig. 3(a). (a) Invariant representation from the spectral
image. (b) Invariant representation from the color image. (c) Object classification result
from the spectral image. (d) Object classification result from the color image.
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6 Applications to Edge Detection

Let us consider the edge detection problem of natural color images based on
the proposed illumination-invariant representation. We calculate the gray-scale
edge strength using the Gaussian color model [2] from the normalized color
values and the illumination-invariant representation to show the effectiveness of
the reflectance color images in reducing the illumination conditions. A white
light source is assumed in the present experiment. Figure 5(a) shows a color
test scene used in Ref. [3]. Figure 5(b) depicts the gray-scale edge strength
of the original tested part. The binary edges are automatically calculated by
Otsu’s method from the gray-scale image. The upper images and lower images
indicate gray-scale images and binary images, respectively. The result contains
many shadows and highlights effects. Figure 5(c) shows the gray-scale edges of
the proposed representation. The edges clearly separate different materials of
metal and dielectric. Thus the proposed representation is independent of the
illumination effects of highlight and shadow, and the geometry of object shape.
To confirm the usefulness of the proposed method, the first results using the
photometric quasi-invariant method [3] are shown in Fig. 5(d) with binary edges.
The second result using the color invariance method [2] are shown in Fig. 5(e).

(a)

(b) (c) (d) (e)

Fig. 5. Edge detection evaluation; (a) a color test scene [3], (b) all edges, (c) proposed
invariant method (d) quasi-invariant method [3], (e) color invariant method [2]
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7 Conclusion

This paper has proposed a method for illumination-invariant representation of
natural color images. The target objects were supposed to be dielectric and
metal, and the surfaces included illumination effects such as highlight, gloss, or
specularity. The procedure for realizing the invariant representation consisted
of three steps: (1) detection of specular highlight, (2) illumination color esti-
mation, and (3) invariant representation for reflectance color. The performance
of the proposed method was examined in experiments using real-world objects
including metals and dielectrics in detail. The results showed that the proposed
representation was invariant to highlight, shadow, object surface geometry, and
illumination intensity. Moreover, we applied the invariant representation to the
edge detection problem successfully.

We also explore as a future work an objective evaluation of the proposed
invariant representation for complex scenes including noise.
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