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Abstract. Image-based capture of material appearance has been exten-
sively studied, but the quality of the results and generality of the applied
methods leave a lot of room for improvement. Most existing methods
rely on parametric models of reflectance and require complex hardware
systems or accurate geometric models that are not always available or
practical. Rather than independently estimating reflectance properties
for each surface point, it is common to express the reflectance as a com-
bination of base materials inherent to each particular object or scene.

We propose a method for efficient and automatic extraction of base
materials in a photometric stereo system. After jointly estimating per-
pixel reflectances and refined surface normals using these materials, we
can render photo-realistic images of complex objects under novel lighting
conditions in real time.

1 Introduction

After decades of development, the acquisition of object geometry using special-
ized scanners and image-based methods is now a relatively mature technology.
The accurate capture of surface appearance and reflectance on the other hand,
remains a major challenge for all but the simplest materials. Image-based cap-
ture of material appearance has been extensively studied [1], but the quality of
the results and generality of the applied methods leave a lot of room for im-
provement. In particular, most existing methods rely on parametric models of
reflectance and require complex hardware systems or accurate geometric models
that are not always available.

Leaving aside the complex effects of subsurface scattering, transparency and
inter-reflections, the appearance of a homogeneous material can be accurately
described by its bidirectional reflectance distribution function (BRDF). This
four-dimensional function defines the percentage of light reflected for every pos-
sible combination of incoming and outgoing light directions.

The acquisition of an independent BRDF for each surface location is not
practical. A high enough sample density would require thousands of images for a
single object. Rather than estimating a full BRDF for each surface point, we can
express the reflectance as a combination of BRDFs from base materials inherent
to each particular object. The variation of materials and surface geometry across
the object allows for a reasonably dense sampling of these base materials from
a relatively small number of images. This concept is illustrated in Fig. 1, where
a strawberry is reconstructed using the method presented in this paper.

A. Fusiello et al. (Eds.): ECCV 2012 Ws/Demos, Part II, LNCS 7584, pp. 350–359, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Base Materials for Photometric Stereo 351

Fig. 1. Material clusters and reconstructed images with the number of base materials
varying from 1 (left) to 5 (right). The ground truth image is in the top-left.

After reviewing related works in Section 2, we propose a method for efficient
and automatic extraction of base materials from images in Section 3, which are
then used to enhance results obtained from a traditional photometric stereo sys-
tem in Section 4. We show that our conceptually simple, data-driven reflectance
descriptor outperforms model-based approaches for material segmentation in
terms of robustness to errors in the estimated geometry (Section 5.2). Using the
captured reflectance and geometry information, we can produce photo-realistic
renderings under arbitrary lighting conditions in real time (Section 5.3).

2 Background and Related Works

Photometric stereo infers information about a surface from images taken un-
der varying light directions. The traditional approach [2] assumes Lambertian
reflectance because of its simplicity and linearity. Surfaces violating this assump-
tion can still be reconstructed by employing robustification to detect and discard
outliers such as shadows and specular highlights [3,4]. More recent photometric
stereo algorithms attempt to go beyond the Lambertian model by estimating a
full bidirectional reflectance distribution function (BRDF) [5,6].

A BRDF describes the reflectance characteristics of a surface for varying di-
rections of incoming (vin) and outgoing (vout) light and can capture complex
phenomena including off-specular highlights and iridescence (goniochromatism).

BRDFs are commonly parametrized in spherical coordinates over the four-
dimensional domain (θin, φin, θout, φout), where the surface normal is at the north
pole (θnormal = 0) and the surface tangent (at φ = 0) defines the orientation of
an anisotropic surface.

We use the reparameterization proposed by Rusinkiewicz [7] based on half
and difference angles: (θh, φh, θd, φd). The halfway vector (θh, φh) is the vector
bisecting vin and vout. The difference angles (θd, φd) are the spherical coordinates
of vin after rotating the halfway vector to the north pole.

Exploiting the symmetries and isotropy in commonly encountered materials
Romeiro et al. [8,9] propose discarding the azimuthal components. This results
in a bivariate BRDF representation using only (θh, θd), as illustrated in Fig. 2.
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Fig. 2. Left: The bivariate BRDF model is parameterized by θh and θd with the normal
pointing towards the north pole. Right: Base materials extracted from a strawberry,
represented with the bivariate model.

They show that this simplification only results in a small decrease in rendered
image quality for a wide range of materials.

Sophisticated hardware systems like the multi-camera, multi-projector system
constructed by Weinmann et al. [10] achieve impressive results, but they are ex-
pensive, and their size makes them unusable for on-site acquisition. Fortunately,
most real-world objects are composed of a limited number of base materials. The
variation of normals and materials across the surface makes it possible to obtain
a large number of samples for each base material from a relatively small number
of images. As shown by Lensch et al. [11], combinations of these materials can
describe the reflectance at each surface point. Additional constraints can impose
spatial smoothness or limit the number of base materials for each combination
[5,12,6,13].

In order to obtain reflectance data for these base materials, some methods
make use of reference objects [5] or custom-made material charts [14] that have
to be included in the scene, but this is not always possible or practical. Gold-
man et al. [6] cluster the albedos obtained from photometric stereo to obtain
an initial set of base materials, but this is not directly applicable for specular
surfaces [15], as their albedo is poorly defined. Other approaches [6,11,15] try
to fit analytic reflectance models such as Ward’s and Lafortune or hemispher-
ical harmonics basis functions to each surface element and apply a clustering
algorithm to their parameters. These models can be highly non-linear, and the
resulting complexity and sensitivity to noise can be problematic, especially when
geometry and lighting are not precisely known. Alldrin et al. [13] make use of
the bivariate BRDF representation by globally optimizing for base materials,
weights and normals. By employing a non-parametric reflectance descriptor for
robust material clustering, we extend on their work by separating the tasks of
material classification and optimization into two. This allows us to reconstruct
high-resolution images of complex samples within an hour on a desktop PC.

3 Extracting Base Materials

The input to our algorithm is a set of M photometrically calibrated images
I1, ...IM acquired with a static camera and varying but known lighting direc-
tions. We assume an orthographic projection model and point-like light sources
at infinity. These assumptions hold for objects which are small in comparison
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to the distance to both the light source and the camera. We also assume that
the target surface can be described with the bivariate BRDF model described
in Section 2.

We find initial surface normals N = {n1, n2, ..., nN} using Lambertian photo-
metric stereo. Our implementation is robust to non-Lambertian characteristics
and produces a usable, albeit noisy normal map even for specular and other in-
tricate surface effects. In theory, the method can recover the normal if a surface
point exhibits Lambertian characteristics for at least three of the images, which
is the case for most materials [5].

Before we can extract full BRDFs for the base materials, we need to cluster
the surface points into groups of similar reflectance. This requires a compact
and robust representation of the local reflectance characteristics at each point,
as well as a suitable distance measure.

3.1 Describing Local Reflectance

For every pixel, we have a series of RGB measurements P = {p1, ..., pM}, one for
each of the M light directions. The incoming light intensity varies with geometry
and is compensated for by dividing each measurement with cos (α), where α is
the angle between incoming light and surface normal.

We now sample individual bivariate BRDF descriptors for each surface ele-
ment (pixel) from the set of RGB values in P . First, the M light directions and
the camera direction (vin resp. vout in Fig. 2) are rotated such that the normal
is pointing towards the north pole. This gives us a pair of angular coordinates
(θh, θd) for each measurement in P . We sample P on a grid of u × v bins over
the angular space by computing the average measurement for each bin. This is
done separately for each color channel. Finally, we transform each sampled bin
into the L∗a∗b∗ color space to render distance measurements more perceptually
meaningful. One material descriptor d thus consists of a vector of 3 × u × v
elements. The whole BRDF domain is rarely sampled at any one pixel and d is
thus usually a sparse vector.

3.2 Clustering into Base Materials

We use k-means to cluster the descriptors into k clusters {c1, c2, ..., ck} of similar
reflectance. For the moment, assume that k is known. Starting from a random
labeling, we compute each cluster center as the mean of all its descriptors, dis-
carding any missing values. For element j in cluster c, we have:

cj =
1

∑
d∈c g(dj)

∑

d∈c

g(dj)dj , j = [1, ..., 3uv] . (1)

where g(dj) is an indicator function, returning 1 if element j exists in descriptor d
and 0 otherwise. The dissimilarity between descriptor d and cluster c is computed
as the mean squared euclidean distance between their overlapping elements:
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dist(d, c) =
1

∑
j [g(dj)g(cj)]

3uv∑

j=1

g(dj)g(cj)(dj − cj)
2. (2)

As d is sparse, Equation 2 is not suitable for directly computing the dissimilar-
ity between two descriptors. However, since k-means only requires the distance
between d and the denser c, this measure is applicable as long as the angular
span of c is large enough to include d. To reduce the sparseness of d, we use
a relatively small dimensionality of the sample grid (u = v = 3 in all our ex-
periments). As our results show, this low angular resolution still allows for an
efficient clustering of the reflectance space.

Since the output of k-means depends on the initial labeling, we run the clus-
tering 25 times and select the labeling with the lowest error, measured as the
accumulated distance between the descriptors and their corresponding cluster
centers:

E =
∑

d

dist (d, cd) . (3)

Note that the clusters themselves are not used as base material BRDFs due to
their low angular resolution. Instead, we use the resulting labeling to sample
high-resolution BRDFs, as explained in Section 4.1.

3.3 How Many Base Materials?

The number of base materials obviously varies depending on the object. Fig. 1
shows the reconstruction of a strawberry for various number of base materials,
rendered using the output from our photometric stereo pipeline (as described in
Section 4). Intuitively, this scene seems to consist of four materials: background
cloth, red body, green leaf and yellow seed capsules. However, the visual quality
for three and even two base materials is surprisingly realistic, while adding a
fifth material does not appear to significantly improve the result. To determine
the number of base materials, we use down-sampled (300×300 pixels) versions of
the original images. Starting with a single material (k = 1), we increase k until
convergence, i.e. until Ek+1/Ek > 0.9 using the error measure from Equation 3.
This algorithm detects five base materials for the strawberry.

4 Photometric Stereo

4.1 BRDF Sampling

The low resolution BRDF descriptors are efficient for classification, but do not
provide enough angular resolution for realistic rendering. To this end, we sample
a high resolution BRDF from each detected cluster. Again, we use the bivariate
representation over (θh, θd), but this time with a larger grid size (50× 50 in our
experiments). This results in a set of base material BRDFs:B = {B1, B2, ..., Bk}.
We interpolate empty bins and smooth the BRDF with a Gaussian kernel. Ex-
amples of extracted base materials can be seen in Fig. 2.
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4.2 Computing Weight Map and Normals

We express each surface point as a linear combination of the base materials by
computing a weight vector w = [w1, w2, ..., wk]

T for each pixel. The RGB values
for base material j are given as a function bj(n, l) of surface normal n (depending
on the pixel) and light direction l (depending on the image). We can then render
a pixel as a function of surface normal, light direction and material weights:

p̂(n, l, w) =

k∑

j=1

bj(n, l)wj cos(α). (4)

For each pixel, we then define a cost function C based on the ΔE∗
ab color differ-

ence between predicted (p̂) and measured (p) values in each of the M images:

C(n,w) =

M∑

m=1

ΔE∗
ab(p̂(n,w, lm), p) (5)

where lm is the (known) light direction in image m.
For each pixel, Equation 5 is minimized with respect to n and w using

Levenberg-Marquard. The normals are initialized from the Lambertian recon-
struction and the weights are initialized according to the k-means labeling: unity
for the labeled material and zero for all others. We obtain the surface normals
and material weight vectors that result in the lowest color difference across all
images. Since the calculations are independent for each pixel, the computations
are simple to parallelize.

5 Results

5.1 Acquisition System

We captured all images using a custom-built dome-shaped acquisition device.
The device consists of 260 LEDs placed on a hemisphere, and a downward-
looking camera at the top. Note that our method is not tied specifically to
this device, for example reflective spheres could be used to obtain the light
directions. For each sequence, we recorded 260 images. All images were used for
the Lambertian initialization, while it proved sufficient to only use every third
image for the remainder of the algorithm (87 images), significantly reducing
computation time.

5.2 Robustness to Noise

In order to test the robustness of our algorithm, we use a simple object with
only two materials: a matte piece of paper with a grid-like pattern of transparent
glue shown in Fig. 3. The perceived color of the painted grid is very close to the
original paper surface, but with severe specular highlights. Material clustering
that takes into account the full BRDF should be able to separate these materials.
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(a)

Wards

HSH

Ours
(b)

Fig. 3. Noise robustness of material clustering with three different reflectance models.
(a) One of the input images, shown with increased contrast. (b) Clustering results with
increasing normal noise, from left to right: no added noise, σ = 0.05 and σ = 0.1.
Ward’s model (top) does not result in a usable clustering, while HSH (middle) fails for
even small amounts of noise. Our parameter-free description (bottom) exhibits graceful
degradation for increasing levels of noise.

Fig. 4. Views of reconstruction results. The original image (left) was removed from the
input set, its light direction was then used in the reconstructions (right).

We compare our non-parametric model to two others that have previously
been used for material classification: Ward’s anisotropic model [16], and hemi-
spherical harmonics (HSH) [17,15]. For both of these models, we independently
fit a BRDF to each color channel. We use the three-parameter version of Ward’s
model as in [16], computed using Levenberg-Marquard with analytic Jacobian.
The HSH model is of second degree, resulting in 9 coefficients per color channel,
computed using linear least squares.

Fig. 3 shows the resulting labeling from k-means with the number of materials
fixed to k = 2. HSH and our model perform similarly without added noise, while
Ward’s model apparently not well suited for this clustering approach. When
adding Gaussian noise to the normals, our method shows a graceful degradation
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Moth, k=6, 2020x1374, 46 min

Euro coin, k=4, 2452x2056, 58 min

Nacre, k=4, 1362x1232, 18 min
(a) (b) (c)

Fig. 5. Photometric stereo results showing: (a) Original photographs (left) and ren-
dered results (right) for two novel light directions, along with the set of extracted base
materials. (b) Final material labels. (c) Surface normals. The rendered results are all
visually convincing. The piece of nacre is translucent and highly specular, showing the
robustness of the proposed method to violations of the underlying reflectance model.

with increasing levels of noise, while HSH performance decreases dramatically
even for low levels of noise. This illustrates the difficulty of fitting non-linear,
analytic BRDF models to noisy measurements.

5.3 Material Clustering and Reconstruction Results

Using our enhanced photometric stereo system, we acquire and reconstruct three
objects: A Euro coin, a Garden Tiger moth, and a small ornamental piece of
nacre (mother of pearl). All experiments were executed and timed on a desk-
top PC with a Quad Core Intel i7 CPU. Fig. 5 shows the rendered output,
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material segmentation, surface normals and computation time for each object.
The simplicity of the bivariate BRDF model allows for fast rendering: our single-
core CPU based renderer easily achieves real-time performance for all our ex-
amples. The rendered images are obtained for a novel light direction that was
removed from the input set of images. Our model convincingly reproduces the
iridescence of the moth wings (Fig. 5a, top row) where the hue changes from
yellow to red when the incoming light angle increases. This behavior can also
be seen in the captured base materials. In the images of the Euro coin, mutual
interference of reflected wavefronts create a noisy speckle pattern in the image,
visible in in the close-up of Fig. 4, while the rendered image is virtually noise-
free. The correct locations of shadows show that the estimated geometry is true
to the original, even for small details such as the individual countries. Nacre is
a particularly challenging material due to its combination of translucency and
strong specularities. Nevertheless, the rendered output is visually acceptable,
which demonstrates the robustness of our algorithm to violations of the bivari-
ate BRDF model. Overall, the reconstructions are of high quality, except for
highly specular details which are difficult to capture with low dynamic range
input images.

6 Concluding Remarks

We have shown that the acquisition of scene-specific base materials using a
non-parametric BRDF descriptor can reliably be used to enhance a traditional
photometric stereo system, providing high-quality rendered results, material seg-
mentations and normal maps for several challenging objects. The results are
surprisingly robust to noise and violations of the underlying assumptions about
reflectance that cause difficulties for approaches based on non-linear analytic
reflectance models.

A dedicated acquisition device such as our dome allows for rapid capture
of 260 images. However, such a large number is likely to be redundant; it is
well worth investigating how to adaptively reduce the number while maintaining
high photometric and geometric fidelity. Note also that our fixed-camera setup
limits the domain of the sampled BRDFs which may prohibit novel-viewpoint
rendering.

Going forward, there are numerous possible generalizations: multi-view en-
vironments, unknown lighting, multi-spectral and HDR imaging, uncalibrated
cameras, and even more general reflectance models including anisotropic mate-
rials. New developments in BRDF acquisition and representation may provide
possibilities beyond those of existing approaches.
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