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Abstract. We present a novel method for facial feature point detection
on images captured from severe uncontrolled environments based on a
combination of regularized boosted classifiers and mixture of complex
Bingham distributions. The complex Bingham distribution is a rotation-
invariant shape representation that can handle pose, in-plane rotation
and occlusion better than existing models. Additionally, we regularized a
boosted classifier with a variance normalization factor to reduce false pos-
itives. Using the proposed two models, we formulate our facial features
detection approach in a Bayesian framework of a maximum a-posteriori
estimation. This approach allows for the inclusion of the uncertainty
of the regularized boosted classifier and complex Bingham distribution.
The proposed detector is tested on different datasets and results show
comparable performance to the state-of-the-art with the BioID database
and outperform them in uncontrolled datasets.

1 Introduction

The face analysis pipeline usually consists of four modules: face detection, face
alignment, feature extraction and face matching. Face detection is the first step
in this process since it segments the facial region from the background before
further processing is performed. The next stage is face alignment, where facial
components, such as the eyes, nose, and mouth and facial outline, are located.
Accurate detection of these facial components is crucial to the success of the
later stages of the pipeline.

Valstar et al. [I] describe the difference between facial component detection,
where entire facial features (e.g., mouth region) are detected, and feature point
detection, where more detailed points inside the facial features (e.g., mouth cor-
ners) are located. Tasks such as face recognition, gaze estimation, facial expres-
sion analysis, gender and ethnicity classification often rely on these finer points.
In this work, we propose a novel facial feature point detector that will locate 15
feature points, as illustrated in Fig. [l

There have been a number of recent methods that have shown great accuracy
in locating feature points in mostly frontal images and controlled environments.
Our immediate goal is facial feature point detection in challenging real-life situa-
tions such as face recognition at-a-distance, where there are different illumination
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Fig. 1. Sample of results of the proposed facial feature detector on our collected out-
door at-a-distance images (Top row) and Labeled Faces in the Wild (LFW) dataset
(Bottom row)

conditions, variability in pose and expression, existence of occlusion and image
acquisition of faces is performed outdoor and at-a-distance (50m to 150m) from
the camera. Moreover, we have taken into consideration the speed of this facial
feature point detection approach to approach real-time.

Since no public dataset is available with these requirements, we have acquired
a database for testing our detector besides the existing databases in the litera-
ture. Our collected images, as shown in Fig. [ Top row), are taken in uncon-
trolled environments at far distances, where instances such as heavy shadowing
across the feature points may occur and parts of the face can be occluded (e.g.,
by sunglasses, hair, or scarf). Pose is also varied from near frontal to severe pose
(£45%), where some feature points are occluded.

Previous work on facial features detectors can be classified into two main
groups : (a) view-based and (b) 3D-based detectors. View-based approaches
train on a set of 2D models; each model can cope with shape or texture varia-
tion within a small range of pose. 3D-based approaches [2] can handle multiple
views using only a single 3D model but can be sensitive to initialization and
computationally expensive. View-based approaches are widely used compared
to its 3D counterpart.

The texture and shape prior models are the main components for building
a view-based detector. For the texture model, the local texture around given
facial feature is modeled,(i.e., the pixels intensity in a small region around the
feature point), while for the shape model, the relationship among facial features
are modeled. Both models are learned from labeled exemplar images.
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Texture-based detectors aim to find the best suitable point in the face that
matches the texture model. The texture model can be constructed using different
descriptors such as Haar-like [3], local binary pattern (LBP) [] , Gabor [5l,
scale-invariant feature transform (SIFT) [6] features. The search problem can be
formulated either as a regression or classification. For the classification problem,
a sliding window runs through the image to determine if each pixel is a feature or
non-feature. For the regression problem, the displacement vector from an initial
point to the actual feature point is estimated.

Texture-based detectors are imperfect for many reasons; visual obstructions
such as hair, glasses,and hands can greatly affect the results. The detection of
each facial feature is also independent from others and it ignores the relation
among these facial feature points. To overcome the disadvantages of texture-
based detectors, constraints related to the relative location of facial features from
each other can be established from the shape model. The relationship among
facial feature positions is commonly modeled as a single Gaussian distribution
function [7/8], which is the model used by the Active Appearance Model (AAM)
and Active Shape Model (ASM) algorithms.

Cristinacce et al. [9] modeled the relative positions of facial features by a
pairwise reinforcement of feature responses, instead of a Gaussian distribution
while Valstar et.al [I] modeled shape using the Markov Random Field (MRF).
These two approaches use a single distribution, which is not suitable for modeling
a wide range of poses. Everingham et.al [I0] extended the model of a single
Gaussian distribution into a mixture of Gaussian trees. Belhumeur et.al [6] used a
non-parametric approach, using information from their large collection of diverse,
labeled exemplars.

In this work, we propose a novel view-based detector based on a regularized
boosted classifier coupled with a mixture of complex Bingham distributions. The
following are the contributions of this paper: (a) use of a mixture of complex
Bingham distributions to model various viewpoints, (b) regularizing a boosted
classifier with a variance normalization factor to reduce false positives, and (c)
a new energy function for facial features detection combining two uncertainty
terms related to (a) and (b).

The complex Bingham distribution is more robust in modeling the joint prob-
ability of the location of facial features than existing models; existing models
need a preprocessing step before using the shape prior to filter out scale, trans-
lation, and rotation using least-square approaches (e.g., Procrustes analysis),
which can introduce errors to the system due to noise and outliers. Since the
probability distribution function (PDF) of a complex Bingham has a symmetric
property, there is no need to filter out rotation. Scale and translation can be
easily removed by a simple mean and normalization step [I1].

We propose to regularize the output of the boosted classifier to handle false
positives in the classification step of each pixel in a certain neighborhood as
feature or non-feature. The output of the classifier should give a high response
in the actual facial feature position and decrease smoothly going away from the
actual position. If the neighborhood variance is low, it is certain that one pixel
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position is the actual feature point; otherwise, if the neighborhood variance is
high, i.e., all classifier outputs in the neighborhood have combined high or low
scores, the classifier is uncertain if a feature point exists in the area. Regular-
ization is performed by dividing a normalization term to the classifier output
related to the standard deviation of the output probability scores in the search
neighborhood.

Finally, we formulate the facial feature point detection problem as an energy
minimization function that incorporate information from both texture and shape
models simultaneously, while most of the state-of-the-art approaches use the
shape model to improve the results of texture-based methods. The proposed
method is compared with existing algorithms on different datasets. Figure [
shows a sample results of our facial features detector method on a sample of
tested images.

2 Facial Feature Extraction

In this section, we describe our texture and shape prior models and how the
problem of facial feature point detection is formulated as an energy minimization
function that incorporates the uncertainty of the texture model response and the
shape prior model.

2.1 Texture Model

In this work, Haar-like features are chosen as the descriptor of local appearance.
The first real-time face detector used these features for detection in [I2]. The
main advantage of Haar-like features over most other features is in the calculation
speed. Using integral images, a Haar-like feature of any size can be computed in
constant time.

For all training samples, we rescale the images such that the face bounding box
is 80 x 80. The optimal patch size around a given facial feature position has been
empirically determined to be 16 x 16. Positive samples are taken at manually
annotated locations. Negative samples are taken at least 20 pixels away from
the annotated locations. For each facial feature, a feature/non-feature classifier
was trained using the AdaBoost learning algorithm on the positive and negative
samples.

Given the face detection bounding box of an input image, we extract sub-
images for each facial feature point; each sub-image is the search space of a
given facial feature point. The center of this sub-image is the mean position
of the feature point in all training images after filtering translation, scale and
rotation. The width and height of the sub-image is based on the variance of
the feature position. A sliding window is run over the sub-image and the Ad-
aBoost classifier assigns a score for each pixel to be the correct position of the
facial feature. The score at position Z is given by S(Dz,) = Y aw F,(Z;)
where oy, is the weight of weak classifier ¢ for the feature ¢ and f, is the binary
response of weak classifier.
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In the case of a perfect texture-based detector, the classifier response is ho-
mogenous as the probability of the pixel being a feature is high at the true
position and decreases smoothly going away from this position. Therefore, we
regularize the output of the classifier with a variance normalization factor by
dividing the output probability of classifier with oy z). ox(z) is the standard
deviation of the output probability among the neighborhood X(Z). Thus, the
probability of position Z is the position of the feature 7 based on the texture
detector can be written as

P(DZL) = kK Z::1 atiFti(Zi)

oIR(Z;)

where K is the normalization constant.

Since each feature has a corresponding sub-image that has a sliding window
classifier running over it, the output of each texture detector can be considered
independent from others. Therefore, the overall probability of Z = [Z, Zs...Zy]
is the positions vector of IV facial features based on the texture-based detector
is given by P(Dz) = [[X, P(Dz,)

2.2 Shape Prior Model

Faces come in various shapes due to differences among people, pose, or facial
expression of the subject. However, there are strong anatomical and geometric
constraints that govern the layout of facial features. The representation of shape,
i.e., joint distribution between facial feature points, is described by various mod-
els in the literature. The active shape model (ASM) is one example, which is
based on a single Gaussian distribution.

Typically, one would like to have a shape representation that is invariant
to translation, scale and rotation. A common way to address this problem is
to use least-squares (LS) fitting methods, .e.g., Procrustes analysis [I1], where
misalignments due to noise and outliers may happen [13]. Moreover, an iterative
procedure is needed to align multiple shapes.

We propose to use the complex Bingham distribution [I4] for our facial feature
detection approach. The advantage of using this distribution is that shapes do
not need to be aligned with respect to rotation parameters. The probability
distribution function of the complex Bingham is

P(Y) = c(A) texp(Y*AY) (1)

where ¢(A) is a normalizing constant.

Since the complex Bingham distribution is invariant to rotation, it is suit-
able to represent shape in the pre-shape domain, the domain where shapes are
zero-offset and unit-scale. In our work, we use the classical way of transforming
from the original shape vector to the pre-shape domain by simply multiplying
with Helmert sub-matrix(H) to the original shape vector the (matrix) and then
performing[TT].
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Multiplying the original shape vector with the Helmert sub-matrix (H) will
project the original facial features position vector Z € C™ to C™~'. Then, the
shape representation using complex Binghanm is

HZ * HZ
A 2)
AR AL (

where A is a (N — 1) x (N — 1) Hermitian parameter matrix, N is number of
landmarks or facial feature points. The spectral decomposition can be written
as A = UAU", where U = [U Uz ---Un_1] is a matrix whose columns U; cor-
respond to the eigenvectors of A and A = diag(M1,---,An—1) is the diagonal
matrix of corresponding eigenvalues.

The normalization constant c(A) is given by ¢(A) = 27V ~1 Zfi}l a; exp(A;)
where a; ! = [1,2:(Ai — Am) The log likelihood of parameters is

P(Z) = c(A) texp(

N—-1
L(A,U) = Y AU SU; — Nlogc(A) (3)

i=1

where the matrix S is a N — 1 x N — 1 matrix denoting the auto correlation
matrix for manually annotated shapes that have zero mean and unit scale. The
maximum likelihood estimators are given by [I1]

UZ:GZ Z:1a277N_1 (4)
and the solution to

dlogc(A) s
d N )

where G = [G1G2---Gn_1] denotes the corresponding eigenvector of S and
L = diag(ly,la -+ In—1) is the diagonal matrix of corresponding eigenvalues.
Since no exact solution exists, we estimate A by minimization of function F’
dlogc(A N
Fy = @ _ (6)
d; l;
This function is linearly approximated and solved iteratively using gradient de-
scent.The update equation of parameter X is given by

N-2

i + A2t Tz (N — Ak)
N—1

D1 GiN
Using the above equation, the parameters of complex Bingham distribution A
and ¢(A) can be estimated off-line from the training shapes examples which are
manually annotated from the MUCT dataset. Since the deformation of shape
due to different poses is large and cannot be handled by a single distribution
[10], [15], we divide the training annotated shapes into M classes. Each class
carries a small range of poses and has its own parameters A,, and ¢(4,,) and a

N

(7)
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Bayes classifier rule is used to determine which class the test image belongs to.
In this work , we use M = 5 which correspondence to poses —45°,—25°, frontal,
25° and 45° The index of class is given by

2.3 Combining Texture and Shape Model

In facial feature detection problems, we try to recover numerous of hidden vari-
ables (position of facial features) based on observable variables (image gray
level). This problem can be formulated as a Bayesian framework of maximum
a-posteriori (MAP) estimation. We want to find the vector Z, which maximizes
the response probability for the texture model and shape model.

Z =argmax P(I|Z)P(Z). (8)

P(I|Z) represents the probability of similarity between the texture of the face
to off-line model given the facial feature vector. Since the similarity of the face
can be expressed in the similarity of the windows around each facial feature, it
can be written as P(W(Z;),W(Zz)---W(Zn)|Z). Where W (Z;) is the image
window around the facial point Z;. The windows around each facial point can
be considered independent from each others. Therefore

N
P(1|12) =[] P(W(20)|20), 9)

i=1

where P(W(Z;)|Z;) can be interpreted as the probability of a pixel being feature
based on the texture model. Based on boosted classifier and Haar-like feature
vector the probability can be written as

PW(Z)|1Z) = P(D7) = Y awru(Z) (10)

Therefore, the maximum-a-posteriori estimate of facial features can be formu-
lated as an energy minimization of function F(Z)

N

— > log P(Dy,) (11)

i=1

*
B(Z) = _HZ AHQZ
| HZ ||
This energy function is non-linear and not amenable to gradient descent-type
algorithms. It is solved by a classical energy minimization technique, which is
simulated annealing where maximum number of iterations is empirically set to

100 iterations.

HZ * HZ

An +10g Cm A 12

m* = arg,, min
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Fig. 2. A comparison of the cumulative error distribution measured on our collected
images dataset(Left) and BIO-ID(Right)

3 Experiments

Our work focuses on facial feature extraction in severe uncontrolled environ-
ments, pose, existence of shadow, presence of occlusion objects as sunglasses
or subject’s hand, existence of in-plane rotation, and blurred images at range
distances in real time. Existing available public databases for evaluation facial
feature extraction do not consider long distance, above 50 meters, and blurred
images. So we collected 1541 faces for 55 subjects. These images are taken at
distances of 30, 50, 80, 100, 150 meters with a Canon 7D camera attached to a
800mm telephoto lens. Furthermore, most of the researchers about facial features
detection in the literature reported results on the BiOID database,therefore we
also included it to test the proposed detector. The BioID dataset [I6] contains
1521 images, each showing a near frontal view of a face in controlled indoor en-
vironments with no illumination and occlusion problems for 23 distinct subjects.

In our experiment, we compare proposed detector with existing algorithms
which are the extended Active shape Model (STASM) [17], compositional image
alignment (AAM) [I8], the detector proposed by Everingham et al. [I0], and the
detector proposed by Valster et al.[I]. STASM shows good performance in lo-
cating facial features on various datasets and most researchers use this detector
for comparison, e.g., [I8], [I]. The compositional image alignment approach is
a modification of the original AAM and has better results than its predecessor.
The detector proposed by Everingham et al. [10] shows competitive results for
the commercial product COTS on a LFPW dataset [6]. The detector proposed
by Valster et al shows the best results on BiolD dataset. We excluded from our
comparison the detector which is proposed in [6]; however, they reported ex-
cellent results on LFPW dataset. Since this task need to be as fast as possible
due to being part of real time system, our detector takes on average 0.47 seconds
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on an Intel Core i7 2.93 GHz machine for locating all facial feature points.
Figure 2 shows the cumulative error distribution of mey7 defined by [19] for our
detector compared to those reported by [19],[1], [5],[I7] on collected image at
distance and BIO-ID.

For investigation, the effect of the regualized boosted classifier as texture model
and the complex bingham as shape model, we conduct an experiment from four
tests on our collected images in an uncontrolled environment. First, The boosted
classifier without the regulairzed term is used as texture model along with the
gaussian distribution as a shape model. Second, the regularized term is added to
the boosted classifier while keeping the shape model as gaussian. Third,the regu-
larized term is kept while changing the shape model to complex bingham distri-
bution. Last, the regularized term is discarded while keeping the shape model as
complex bingham distribution, as shown in figure 3 (b). It shows that each of reg-
ularized term and the complex bingham improves the result especially when the
detected facial features are far from the correct one. However,the effect of complex
bingham distribution is more significant than the regularized term.
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Fig. 3. (a) Some results of our proposed detector on the BiolD dataset. (b) The Eval-

uation of the effect of regularized term in the texture model and complex bingham as
shape model on our collected images dataset.

4 Conclusion

We have described a new approach for facial features detection based on com-
plex Bingham distribution and regularized boosted classifier. We combine the
uncertainty of the response of complex Bingham and boosted classifier is an en-
ergy minimization function. Our detector is robust under a variation of pose,
in-plane rotation, expression, occlusion, and illumination. It shows that we out-
perform existing facial detector in uncontrolled environment images and achieve
a comparable results in the less challenging dataset BIO-ID.
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