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Abstract. Registration is a critical step in computer-based image anal-
ysis. In this work we examine the effects of registration in face-based
soft-biometrics. This form of soft-biometrics, better termed as facial an-
alytics, takes an image containing a face and returns attributes of that
face. In this work, the attributes of focus are gender and race. Automatic
generation of facial analytics relies on accurate registration. Hence, this
work evaluates three techniques for dense registration, namely AAM,
Stacked ASM and CLM. Further, we evaluate the influence of facial
landmark mis-localization, resulting from these techniques, on gender
classification and race determination. To the best of our knowledge, such
an evaluation of landmark mis-localization on soft biometrics, has not
been conducted. We further demonstrate an effective system for gender
and race classification based on dense landmarking and multi-factored
principle components analysis. The system performs well against a multi-
age face dataset for both gender and race classification.

Keywords: facial landmarking, auto-landmarking methods, gender
classification, race determination.

1 Introduction

Automatic facial landmarking is a very important step that precedes any task in-
volving face recognition or analysis. These landmarks, also referred to as fiducial
points or anchor points, are used for accurate registration of faces and have a sig-
nificant effect on the impending analysis. While some applications, such as, face
recognition and tracking use a few landmarks like the eye and eyebrow corners,
centers of the iris, corners of the mouth, tip of the nose and chin for registration,
other applications like age estimation, expression analysis, detection of intent or
facial aging require a greater number of landmarks for analysis. Further, it is
important that the detection of these points be accurate and robust to environ-
mental variables e.g. illumination, occlusion, expression, pose, etc. It has been
shown that precise landmarks are essential for face-recognition performance and
that more landmarks results in higher recognition performance. However, under
various conditions of image acquisition, automatic facial landmarking becomes
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a challenging task. There exist many automatic registration algorithms which
perform well in detecting the internal landmarks e.g., the eye corners, centers
of the iris and the corners of the mouth. More often, performance of these algo-
rithms are reported solely on a few such, well-defined points, which artificially
inflate the performance of algorithms in a real-world application. However, in
this paper, we consider an extremely dense scheme consisting of 252-points on
the face that includes internal and boundary points. Such a dense scheme is help-
ful in applications in soft biometrics such as expression recognition, detection of
micro gestures, age estimation, gender and race classification, facial aging etc.
While one can argue that accurate detection of a few internal points is sufficient
for many tasks, it is often necessary that features such as the boundary of the
face must be accurately detected for applications that involve facial synthesis or
off-pose face recognition. The main contributions of this paper are: (1) Provide a
set of baseline algorithms and performance metrics for extremely dense registra-
tion. (2) Evaluate the influence of automatic detection of landmarks on gender
classification and race determination. The remainder of this paper is organized
as follows: A background on existing automatic landmarking methods and those
considered for this work is discussed in section 2. Experiments and Results are
presented in section 3. Conclusion and future work is discussed in section 4.

2 Background

Algorithms proposed for automatic facial landmarking can be broadly classi-
fied into two categories: image-based methods and structure-based methods. In
image-based methods, faces are treated as vectors in high dimensional space,
which are then modeled as a manifold. The variability in facial features is cap-
tured through popular transformations like the Principal Components Analysis,
Independent Components Analysis, Gabor Wavelets, Discrete Cosine Transforms
and Gaussian derivative filters. The appearance of each landmark is then learned
through the use of machine learning approaches like support vector machines,
boosted cascade detectors and multi-layer perceptrons [1] [2][3].

Structure-based methods use prior knowledge about facial landmark positions,
and constrain the landmark search using heuristic rules that involve angles, dis-
tances and areas. Very popular methods in this category are Active Shape Models
(ASM) [4], Active Appearance Models (AAM) [5] and Elastic Bunch Graphing
Methods. ASMs model textures of small neighborhoods around landmarks and
iteratively minimizes the differences between landmark points and their corre-
sponding models. The AAM typically looks at the convex hull of landmarks,
synthesizes a facial image from a joint appearance and shape model, and seeks
to minimize similarity to the target face iteratively. Cristinacce et al. [6] pro-
posed the Constrained Local Model (CLM) approach that uses a set of local
feature templates for detection of landmarks. There have been many variants
and improvements on these classic ASM, AAM and CLM approaches. By fit-
ting more landmarks and stacking two ASMs in series, Milborrow and Nicolls
[7] locate features in frontal views of faces. In [8], Saragih et al. propose a reg-
ularized mean-shift algorithm to the CLM approach. Due to their widespread
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use in various automatic landmarking applications, the availability of their ac-
tual implementations and also flexibility to train the algorithms using our dense
scheme, the following three automatic landmarking methods are considered for
this work.

Active Appearance Models: Active appearance models (AAM), a group of
flexible deformable models, have been widely used for automatic landmarking.
First proposed by Cootes et. al [5], AAM decouples and models shape and pixel
intensities of an object. As described in [5], the AAM model can be generated in
three main steps: (1) A statistical shape model is constructed to model the shape
variations of an object using a set of annotated training images. (2) A texture
model is then built to model the texture variations, which is represented by
intensities of the pixels. (3) A final appearance model is then built by combining
the shape and the texture models. The AAM software used for this work was
obtained from [9].

Constrained Local Models: Constrained Local Models are a derivative of Ac-
tive Shape Models (ASM). These are methods that make independent predictions
regarding locations of the model’s landmarks, which are combined by enforcing
a prior over their joint motion. Most CLM variants implement a two step fitting
strategy, where an exhaustive local search is first performed to obtain a response
map for each landmark. Optimization is then performed using strategies to max-
imize the responses of the landmarks. In this paper, one such strategy that uses a
gaussian prior over the model’s PCA parameters is implemented as an automatic
method to be compared against. The algorithm is itself presented by Saragih et
al. in [8]

STASM: STASM or Stacked Active Shape Model [7] is an extension of active
shape model proposed by Cootes [4]. As described in [7], STASM extends the
active shape model by fitting more landmarks than actually needed, by selec-
tively using two-instead of one-dimensional landmark templates and stacking
two active shape models in series. The C++ software library to train and test
the models for this work was obtained from [10]

3 Experiments and Results

3.1 Design of Experiments

Databases Used The automatic landmarking algorithms were trained using
images obtained from MORPH [11] (a publicly available mugshot database),
the PAL database [12] and the Pinellas County database (mugshot database
with limited distribution). In addition, the data was formulated with distribu-
tion of images over four ethno-gender groups: African American Male (AAM),
African American Female (AAF), Caucasian American Male (CAM) and Cau-
casian American Females (CAF), and age ranges as shown in Table 1 and Table
2 for training the general model. A total of 1155 images were used for training.
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Fig. 1. Example of dense annotation map Fig. 2. Component scheme adopted for
landmarking. Each expert was trained on
annotating a color coded feature

Table 1. Training Data: Distribution
based on ethno-gender groups and age
ranges

Age Range AAM AAF CAM CAF

18-30 50 50 50 50

31-40 50 50 50 50

41-50 50 50 50 50

51-60 50 50 49 50

61-70 50 50 48 50

71+ 38 21 49 50

Table 2. Training Data: Distribution
based on databases

Database AAM AAF CAM CAF

Pinellas 88 62 104 180

MORPH 200 199 149 67

PAL 0 10 43 53

Obtaining Ground-Truth Data Obtaining ground truth coordinates for
points on an image is not only tedious but also a time-consuming task. Great
effort must be taken to get the annotators to consistently locate and label the
right features on the image. In addition, to account for inter-observer variability
in obtaining gold standard points requires that the images be annotated by at
least 3 or more trained annotators for each image [13]. Thus it has become cus-
tomary for researchers to report the performance of their algorithms on datasets
that have ground truth as part of their distribution. However, since this work
is based on a dense 252 landmark scheme for the face, which is not available in
any face datasets, it was necessary that we generated the ground truth in-house.
Given the large number of training and testing data and the density of the an-
notation scheme itself, it was not practical, both in terms of time and resources,
to obtain repeat measurements for the ground truth data by 4 or 5 well-trained
annotators. Instead, a component scheme was developed, in which, experts were
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trained to annotate a specific region or component of the face. Each expert anno-
tated a specific feature/component of the face as color coded in Figure 2 across
all the images in the training and testing data. This ensured that variations in
annotating features of the face were kept at a minimum.

Training and Testing Methodology. For purposes of evaluation and com-
parison, each of the automatic landmarking methods were trained on the entire
set of 1155 images, which will be henceforth termed as general model.

Similar to the collection of training data, testing data from the various ethno-
gender groups i.e. African American Females (AAF), Caucasian American Males
(CAM), African American Males (AAM) and Caucasian American Females
(CAF) were formulated to evaluate the performance of the algorithms. In ad-
dition to the 1155 images that were manually annotated to train the models,
ground truth for test images for the AAF, CAM, AAM and CAF ethno-gender
groups were obtained using the same component scheme. The distribution of
test images used in this work is as shown in Table 3 and Table 4.

For testing the performance of the landmarking algorithms, each of the al-
gorithms were trained on the general model and automatic landmarks were ob-
tained for the general test set. These detected landmarks were then compared
to the ground truth that was generated for the testing data.

Table 3. Testing Data: Distribution
based on ethno-gender groups and
age ranges

Age Range AAF CAM AAM CAF

18-30 50 50 50 50

31-40 44 49 50 50

41-50 41 50 50 50

51-60 49 50 50 50

61-70 11 50 43 50

71+ 0 50 2 26

Table 4. Testing Data: Distribution
based on databases

Database AAF CAM AAM CAF

Pinellas County 103 240 140 244

MORPH 80 44 101 6

PAL 12 15 4 26

3.2 Performance Measures

In our experiments, we evaluate the efficiency of the AAM, CLM and STASM
landmarking algorithms in a two step process. First, the actual error in point
detection is evaluated on all of the 252 points,by comparing the points detected
by the algorithms with the ground-truth available on the testing data. Next, the
influence of these detected landmark points is quantified when applied to gender
classification and race determination as shown in Figure 3

Error Analysis of Automatic Point Detection. The efficiency of the algo-
rithms are evaluated by analyzing the errors associated with the detected points
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Fig. 3. Evaluation of automatic landmarking methods

when compared to the ground-truth.The interocular distance dio is used as a
normalization factor for computing error measures. Interocular distance is the
distance between the centers of left and right eye and is often used in state-of-
the art studies in 2-D facial landmarking. Since the distance error measure is
scaled by the interocular distance, it is invariant to the variation in size of each
individual face, which allows scaled comparison of point to point errors between
images. The interocular distance varied between 48.8 and 130.11 pixels for the
test data.

The detection error of a point i is defined as the Euclidean point to point
distance between the ground-truth point Ti and detected point T̂i:

ei =
||Ti − T̂i||

dio
(1)

An average error per annotation point p, across all the images in the test set
was computed using the formula

mp =
1

mdio

m∑

i=1

di (2)

where di are the Euclidean point to point errors for each individual annotation
point and m is the number of images in the test data set. The average error for
each of these individual points is as shown in Figure 4 for the test data.

The classification rate Ci can be defined as:

Ci =

∑m
j=1 e

j
i < 0.1

m
(3)
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Fig. 4. Plot of average error per
annotation point as a percentage of
interocular distance vs. landmark

Fig. 5. Plot of average error per annota-
tion point as a percentage of interocular dis-
tance vs. landmark

where j is the image number and m is the total number of images in the dataset.
The classification rate for the test data is as shown in Figure 5.

The average image error on an image I can be defined as

mI =
1

ndio

n∑

i=1

di (4)

where n denotes the number of landmarks (252) and di values are the Euclidean
point-to-point distances for each individual landmark location. The average
image error for the different algorithms for the general model is as shown in
Figure 6.

Fig. 6. General Test Data: Average Image
Error

Fig. 7. Comparison of cumulative
error distribution of point to point
error

The cumulative error distribution of point to point error measured on the test
set is as shown in Figure 7.

Also, to compare the errors associated with the individual physical features
of the face, average errors were computed on the set of landmarks that make up
the physical feature. Results are as shown in Table 5 for the general model.
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Table 5. General Model: Average Error Associated With Physical Features (as a
percentage of interocular distance)

Algorithm Face Eyebrow Eyebrow Eye Eye Nose Mouth Soft
Outline (L) (R) (L) (R) Tissue

AAM 12.1 7.9 7.0 3.6 3.3 4.4 6.3 8.2

CLM 9.2 5.5 5.0 2.5 2.4 3.2 3.9 5.7

STASM 7.2 5.2 5.3 2.6 2.6 2.7 2.9 4.7

In the analysis of the average image error on our data, a Kruskal-Wallis H test
was performed. It was found that there was a statistically significant difference
between the different algorithms (H(2) = 980.88, P < 0.01) with a mean rank of
2151.69 for AAM, 1480.72 for CLM and 932.09 for STASM. Since STASM and
CLM have relatively lower mean errors, their performance is better than AAM.
From Figure 4, it can be seen that STASM has the lowest average error per
annotation point. From Figure 5, it is seen that the average error per annotation
point is comparable in both CLM and STASM on all points other than the
boundary points on the face. In addition, the average image error on each of the
training images were lower for STASM and CLM as shown in Figure 6. Also,
Figure 7 shows that STASM has a higher fraction of images on which the error
was below 10% of the interocular distance. At 10% of the inter ocular distance,
STASM and CLM perform better than the AAM. It is evident from Table 5 that,
STASM and CLM have lower errors on individual facial features when compared
to the AAM. It can be seen from Figure 4 and Table 5, that errors associated
with points on the soft tissue are larger than the errors associated with points
on an actual facial feature e.g. left eye, right eye, nose and the mouth. This may
be also due to the fact that it is a challenging task for the algorithms to detect
the points when the actual trait of the soft tissue e.g. creases on the forehead,
nasiolabial lines or the crows feet, is not very well defined across all faces, i.e.
these creases and lines are not apparent on young faces. Future experiments will
delve into quantifying the errors on older faces. The primary errors are found
on the face boundary. Further, the left face boundary–chin to the ear–generates
the most errors. This is helpful for applications where automatic detection of the
outline of the face is also important, in addition to the internal features. Finally,
although the time taken to train the models and time to automatically detect
these landmarks were not quantified directly from the experiments performed,
it was observed that STASM and CLM have much lower training and detection
times when compared to the AAM. This suggests that STASM and CLM are
better methods for automatic landmarking on realtime application, e.g. face
tracking on video or large-scale batch analysis of faces, which may be executed
in cloud based systems.

Application to Soft Biometrics. In practice, automatic landmark detection
leads to mis-localization of a few annotation points. An evaluation of the in-
fluence of this mis-localization was performed on gender classification and race
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determination. For each of these classifiers, an active appearance model (AAM)
was trained on the set of training images and the corresponding combined ap-
pearance parameters were used to train a Support Vector Machine (SVM). All
face parameters, except the four, which explains rotation, translation, and scale,
were used to train each (gender and race) classifier. The trained SVM classifiers
were then used to determine the gender and race of the images in the hold out
testing data. The results are as shown in Table 6 and Table 7 below. It can be
seen that, performance of CLM and STASM on gender and race classification
are comparable and better than AAM. Also, comparing the difference between
the efficiencies of classifiers on ground truth and auto-detected points, gender
classification is more sensitive to automatic landmarking errors than race de-
termination. An example of an image in which race was falsely misclassified to
be caucasian by all the three algorithms is as shown in Figure 8. Similarly, an
example in which the gender was misclassified to be a female by all the three
algorithms is as shown in Figure 9. In both the examples the classification was
correct, when the face parameters were generated from the groundtruth points.

Table 6. Gender Determination Clas-
sification Accuracy (%)

Ground Truth AAM CLM STASM

96.8 83.3 85.9 85.8

Table 7. Race Classification Accu-
racy (%)

Ground Truth AAM CLM STASM

99.2 96.5 97.9 98

Fig. 8. Race Classification: Source Image, Ground-truth Annotations (�), AAM de-
tected(X), CLM detected(X), STASM detected points(X)

Fig. 9. Gender Determination: Source Image, Ground-Truth Annotations (�), AAM
detected(X), CLM detected(X), STASM detected points(X)

3.3 Conclusion and Future Work

In this paper, three state-of-the art algorithms - AAM, CLM and STASM, are
compared for automatic landmark detection on a set of dense landmarks on the
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face. The performance of each of the algorithms are evaluated both in terms of
actual errors in landmark detection and consequently by their ability in gender
classification and race determination. A particular strength of the CLM algo-
rithm is its performance in the presence of occlusions. Future evaluations will
include performance of these registration techniques in the presence of noise
and occlusions. From the experiments that were conducted, it can be concluded
from this paper that: (1) CLM and STASM are better algorithms to be used for
automatic landmarking on a dense landmarking scheme in terms of accuracy,
time taken to train the model and detection of landmarks. (2) The influence
of mis-localization of annotation points, resulting from automatic landmarking
algorithms, is pronounced on race determination and gender classification. The
efficiency of the classifiers decreases with the degree of inaccuracy in the land-
marks detected. However, while manual landmarks are still the best for gender
and race classification, automatic detection algorithms such as STASM and CLM
are viable surrogates.

Acknowledgments. This work was partially funded by ongoing efforts with
National Institute of Justice, Oakridge National Labs, and Federal Bureau of
Investigations Biometric Center of Excellence.

References

1. Viola, P., Jones, M.: Robust real-time object detection. International Journal of
Computer Vision (2001)

2. Vukadinovic, D., Pantic, M.: Fully automatic facial feature point detection using
gabor feature based boosted classifiers. In: IEEE International Conference on Sys-
tems, Man and Cybernetics, vol. 2, pp. 1692–1698 (2005)

3. Dibeklioglu, H., Salah, A., Gevers, T.: A statistical method for 2-d facial land-
marking. IEEE Transactions on Image Processing 21, 844–858 (2012)

4. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their
training and application. Computer Vis. and Image Under. 61, 38–59 (1995)

5. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Proc.
Eur. Conf. Comput. Vis., vol. 2, pp. 484–498 (1998)

6. Cristinacce, D., Cootes, T.: Feature detection and tracking with constrained local
models. In: BMVC, pp. 929–938 (2006)

7. Milborrow, S., Nicolls, F.: Locating Facial Features with an Extended Active Shape
Model. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS,
vol. 5305, pp. 504–513. Springer, Heidelberg (2008)

8. Saragih, J., Lucey, S., Cohn, J.: Deformable model fitting by regularized landmark
mean-shift. International Journal of Computer Vision 91, 200–215 (2011)

9. AAM, http://sourceforge.net/projects/asmlibrary/files/
10. Stasm, http://www.milbo.users.sonic.net/stasm/download.html
11. Ricanek, K., Tesafaye, T.: Morph: A longitudinal image database of normal adult

age-progression. In: 7th Int. Conf. on Auto. Face and Gesture Recog., pp. 341–345
(2006)

12. Minear, M., Park, D.: A lifespan database of adult facial stimuli. Behavior Re-
search Methods, Instruments and Computers: A Journal of the Psychonomic Soci-
ety, Inc. 36, 630–633 (2004)
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