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Abstract. 3D-2D face recognition is beginning to gain attention from
the research community. It takes advantage of 3D facial geometry to nor-
malize the head pose and registers it into a canonical 2D space. In this
paper, we present a novel illumination normalization approach for 3D-2D
face recognition which does not require any training or prior knowledge
on the type, number, and direction of the lighting sources. Estimated
using an image-specific filtering technique in the frequency domain, a
self-lighting ratio is employed to suppress illumination differences. Ex-
perimental results on the UHDB11 and FRGC databases indicate that
the proposed approach improves the performance significantly for face
images with large illumination variations.

Keywords: Lighting ratio, illumination suppression, 3D-2D face recog-
nition.

1 Introduction

The research on 3D-2D Face Recognition has rapidly increased in recent years.
Since the facial geometry is invariant to camera viewpoints, 3D facial data can
be used to overcome the difficulties of head pose variations. Currently, limited
by the high cost of 3D face scanners, it is impractical to deploy a large number
of 3D scanners in real world face recognition applications. This emphasizes the
advantage of using the alternative approach of 3D-2D face recognition setups,
which use 3D + 2D facial data as the gallery and 2D facial images as the probe.
An excellent survey of face recognition was presented by Bowyer et al. [1]. Recent
reviews are included in [2][24][3][4]. llumination variations remain a challenge
for improving the overall robustness and performance of 3D-2D FR systems.
In this paper, we provide an efficient solution for illumination normalization to
enhance the performance of 3D-2D face recognition systems.

The basic idea of our method is to relight the input images to a preset texture
with a constant value so that the relit input images are symmetric and close to
each other. This is achieved by computing the point-wise division between the
original texture and the lighting ratio, an estimate of the illumination conditions.
Assuming that most of the illumination effects vary slowly on the facial textures,
and that the majority of the energy of illumination is distributed among the low
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frequencies, we estimate the lighting ratios via low-pass filtering in the frequency
domain. In order to choose the cut-off frequency for the filter so that it can
be adaptively used for images under various lighting conditions, we propose
an image-specific low-pass filtering technique. The lighting ratio is adjusted to
minimize the Ly norm between the outcome of the division and the preset texture
to further reduce the contrast and exposure difference on faces due to skin type,
camera parameters, and lighting conditions.

Our main contributions are: (i) developed a novel illumination normalization
method based on self-lighting ratio with the aim of enhancing face recognition
performance; (ii) developed an image-specific low-pass filtering method that does
not require preset parameters; (iii) proposed to use a preset texture with a
constant value as the reference for illumination suppression.

The rest of the paper is organized as follows: Section Pl discusses the related
work in the literature. Section[3 provides an overview of a 3D-2D face recognition
system. The proposed method is detailed in Section @l Section [ presents the
experimental results. Section [6] summarizes our findings.

2 Literature Reviews

The illumination normalization methods for face recognition can be generally
divided into two catogories: (i) normalizing the lighting conditions for a pair
of images (relighting) [5][6][7][8][9][L0], (ii) normalizing the lighting effects for a
set of images (unlighting) [11][12][13][14]. To estimate the lighting effects, either
subspace-based models or image processing techniques have been adopted.

Subspace-based methods model the lighting in a low-dimensional space. Shim
et al. [5] built a subspace model for each pixel under various lighting conditions
per subject and per pose. The lighting, pose, and reflectance were jointly inferred
using an EM-like process. Zhang and Samaras [I5] recovered person-specific ba-
sis images by combining spherical harmonics illumination representation with
3D morphable models. The basis images were subdivided into small regions and
incorporated into an MRF framework to remove the lighting and relit faces un-
der arbitrary unknown lighting conditions in [7]. Blanz and Vetter [16] imposed
linear constraints on both the albedo and the shape of the face. They proposed a
3D morphable model to represent each face as a linear combination of 3D basis
exemplars. The recovery of lighting parameters was realized as an optimization
problem that aimed to minimize the difference between the input and the re-
constructed image. Sungho et al. [I3] minimized the Li-norm between an image
and a linear combination of principal lighting eigenvectors for unlighting. The
lighting eigenvectors were obtained using PCA on eight illumination maps with
eight light sources distributed evenly. Kumar et al. [6] built eight-dimensional
subspace models for texture and illumination, respectively.

Image processing based methods estimate the lighting mainly via spatial
smooth filtering or using Quotient image approaches. Quotient Image [17] is
the ratio between an image and a linear combination of three images lit by
independent light sources. Wang et al. [I8] proposed the Self-Quotient image
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Fig. 1. Flowchart of the 3D-2D face recognition pipeline

which replaced the linear combination of three images by the smoothed input
image to ease the assumptions posed in Quotient image and presented prelimi-
nary results on face recognition. Han et al. [§] computed illuminations using a
homomorphic wavelet filtering and computed the Quotient image between two
illumination images for relighting. Chen et al. [10] used edge-preserving filters to
obtain the large-scale layers of two images and then convolved them to compute
the ratio coefficients for relighting. Biswas et al. [I1] added a signal-dependent
non-stationary noise term to the Lambertian model and hence, computed albedo
as the Linear Minimum Mean Square Error estimate of the true albedo. The noise
incorporated the errors in surface normal and illumination estimation and thus
resulted in obtaining a more realistic albedo using their methods. Vural et al.
[14] applied the Ayofa-filters to filter out the illumination effect on faces.

3 Overview of a 3D-2D Face Recognition System

The face recognition experiments are conducted using the 3D-2D face recogni-
tion system proposed by Toderici et al. [3]. The facial data in the gallery include
both a mesh and a texture while the facial data in the probe includes only tex-
ture. For each 3D mesh in the gallery, the Annotated Facial Model (AFM) [19]
is fit to establish a person-specific point-to-point correspondence mapping of the
3D mesh to the UV space. For the 2D image in the gallery, each fitted model
is transformed and projected to the pose appearing in the texture image using
a set of landmarks. Then, using the previously established correspondences, the
texture is lifted to a two-dimensional (UV) space with pose normalized to be
frontal. The self-occluded parts of the face in the original pose are masked out.
For each texture in the probe dataset, the same process is repeated using the
fitted model from the gallery dataset that it is compared with. After processing
textures in both gallery and probe, the illumination is normalized either by re-
lighting [3] or unlighting (illumination normalization) as proposed in this paper,
and a correlation-coefficient-based distance metric is computed for each pair of
textures from the gallery and the probe. A flowchart of the system is presented
in Fig. [

4 Minimizing Illumination Differences Using the
Self-lighting Ratio

4.1 Definition of the Self-lighting Ratio

The self-quotient image @ is defined as an intrinsic property of a face image I
of an individual [18], by @ = ;, where [ is the smoothed version of I, F is the
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smoothing kernel, and the division is pixel-wise. Wang et al. [I8] used a Gaussian
filter F' to obtain the I.

The self-quotient image method has demonstrated its capability in improv-
ing face recognition performance via reducing illumination differences. However,
during its computation the range of self-quotient image spans from zero to in-
finite, since it is computed from a pixel-wise division. A small variation on the
smoothed value may lead to large variations on the self-quotient image. There-
fore, while this method reduces the illumination on the facial texture, it also
introduces numerical artefacts, especially in the shadowed regions. For example,
obvious noise can be observed on the shadow region of the face in Fig. 2 in [I§].
Meanwhile, using a spatial filter to obtain the smoothed version of I raises two
different problems. First, it is hard to determine the appropriate sliding window
size for filtering since the size depends on the face scale and the lighting con-
ditions. Second, there is no consensus on the appropriate kernel in the spatial
domain to obtain the lighting conditions on the face. Nevertheless, a smoothing
kernel in the spacial domain has the effect of a low-pass filter in the frequency
domain removing high frequencies (mostly edges) while enhancing low frequen-
cies. This is consistent with the statement in [20], where under the Lambertian
assumption, the low frequency part in the image captures mostly the lighting
condition on the facial image. Thus, an alternative way to overcome the afore-
mentioned problems is to estimate the self-lighting ratio (Eq. [). This can be
written as:

v (o5 o0 ) = (g o) -t W

where L denotes the self-lighting ratio, ¢ denotes a low-pass filter, 7 and 7 !
is the Fourier transform and inverse Fourier transform, T is the relit image, Iis
the smoothed version of the image I, and «, 8 are scale and offset parameters.
The adoption of these two parameters compensates the contrast and offset vari-
ations of facial textures I caused by lighting conditions, skin type, and camera
parameters. The addition, the division, and the multiplication are pixel-wise.

4.2 Algorithm

The proposed algorithm changes the self-lighting ratio to minimize the difference
between the relit image T' and a predefined image I, (set to a uniform value 60):
argmin || I, — LgI| .. Thus, the algorithm pursues the minimum Frobenius norm
of the difference image between the input image Lzl and I,. There are three
positive effects from this algorithm. First, all the relit images T = Lgl are
similar to each other in terms of global intensities since we adjust the lighting
conditions according to one preset texture. Second, the lighting conditions on
the relit images are more symmetric since [, is symmetric and the parameters
«, B adjust the contrast and offset variations on I. Finally, the estimation of I
is more accurate since it is performed using an image-specific low-pass filtering
algorithm, which avoids the use of an arbitrary low-pass filtering parameter for
all textures regardless of their lighting conditions.
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Algorithm 1. Illumination normalization using lighting ratio
Input: Facial texture I and low-pass filter
Output: Normalized texture T'
1: Convert the texture I to the HSV color space and extract its V' channel (V)
Obtain Vy'’s Fourier spectrum Fy via 2D Fast Fourier Transform
Compute the image-specific parameter P for £ (Sec. 4]
Filter the magnitude of F, by applying the low-pass filter ¢ to obtain Fj
Apply the inverse Fast Fourier transform on the filtered spectrum F} to obtain the

lighting component \75,

Minimize the Lo norm between I, and (a }

@
S
+ +

B)*Vy

7: Compute the normalized texture: T = (aV B) x Vg
g

The detailed algorithm is depicted in Alg.[Il The symbols & and B in Step 7 de-
note the optimized parameters. The Nelder-Meade simplex algorithm [21] is chosen
for the minimization in Step 6. It is one of the best known algorithms for uncon-
strained optimization without derivatives and is quite simple in computation.

4.3 Illumination Estimation in the Frequency Domain

To filter the image in the frequency domain, we first apply the Fourier Trans-
form to the image V: F(k,I) = Zi\;l i\f:?)l Vs, t)e 27N+ 1) where V is
the image, s,t are the indices on V', and N is the image size, F' is the Fourier
spectrum and k, [ are the indices on F'. The exponential term is the basis func-
tion corresponding to each point (k,1) on the Fourier spectrum. Then, the low-
pass filter £ which has the same size of F' is multiplied with the magnitude of
the spectrum F' in a pixel-by-pixel fashion: |F'(k,l)| = |F(k,1)|£(k,1), where
|F(k,1)| is the magnitude of the input spectrum F, £(k,l) is the filter, and
|F'(k,1)] is the filtered spectrum. To obtain the lighting estimates in the spa-
tial domain, the inverse Fourier transform is applied on the filtered spectrum
F' V(s,t) = ]\}2 fCV:_Ol l]\igl F’(k:,l)ezm(lf\?"‘%), where F' captures the low
frequencies of the image V', and ]\}2 is a normalization term in the inverse trans-
formation.

4.4 Image-Specific Low-Pass Filtering

It is hard to choose an arbitrary cut-off frequency for all facial images for low-
pass filters since the lighting conditions vary in different facial images. Instead,
we propose to compute an image-specific energy threshold P (in the range [0,1])
for each image automatically. The basic idea is that the number of lights, light-
ing direction, and intensity change the frequency distribution mostly in the low
frequencies. While the portion of energy useful for identification is distributed
mostly in middle frequencies, and the skin details which are distributed mostly
in high frequencies remain relatively steady, the energy variations among fixed
posed facial textures are highly related to the lighting conditions. Thus, by vary-
ing the cut-off energy instead of the cut-off frequency, we can estimate the light-
ing conditions in a more accurate manner for each image. Note that the energy
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in Fourier spectrum Fj is defined as the Ly norm of the F;, magnitude and we
iteratively increase the cut-off frequency until the energy of the passed frequency
components is greater than a portion (P) of the energy of all frequencies of the
image in the implementation.

We adaptively compute P for each image, which varies with the energy from
lighting conditions in the image. Histogram equalization (HE) adjusts the inten-
sity distributions on the histograms of the texture which is able to change the
energy of the image to a level quite constant among different face textures across
various lighting conditions. Thus, we approximate the P using the energy of the
HE adjusted image as a reference:

P o B(I)/E(Ly) ~ KE(D)/E(L,), (2)

where « is a constant (set to 0.05), E(I) is the energy of the input image I, and
E(I.q) is the energy of the input image processed by the histogram equalization
I.q. The energy is defined as the Ly norm of their V, images. Since the energy
identification and the skin details are relatively constant as well as the energy
of the HE adjusted image, P is able to reflect the energy variations caused by
lighting conditions.

The choice of the low-pass filter is also important in estimating the light-
ing conditions. The ideal filter is a simple low-pass filter, which suppresses all
frequencies higher than a threshold frequency C' and keeps the lower frequen-
cies unchanged. However, it introduces an ringing artefact that occurs along the
edges of the filtered image in the spatial domain. Thus, we opt to use more so-
phisticated low-pass filters (e.g., a Gaussian filter or a Butterworth filter). The
Gaussian filter has the same shape in the spatial and frequency domains and
therefore does not incur the ringing artefact. The Butterworth filter is an ap-
proximation of Gaussian filter and outputs a similar result as the one obtained
by the Gaussian filter. However, considering the computational complexity, the
Butterworth filter is a better choice for wide low-pass filtering, while the Gaus-
sian filter is more appropriate for narrow low-pass filtering, which is our case.
Thus, we adopt a Gaussian filter £ in this work.

5 Experimental Result

5.1 Datasets

To assess the robustness of our algorithm under various head poses and illu-
mination conditions, we tested it on the publicly available UHDB11 [22] and
FRGC v2.0 [23] datasets. The UHDBI11 dataset contains 1,625 3D facial scans
captured by a 3dMD scanner and 1,625 images captured by a Canon DSLR
camera. Facial data from 23 different subjects were acquired under six indoor
illumination conditions, four yaw rotations, and three roll rotations per subject.
The head pose varies from £50 degrees in the roll direction, and +30 degrees in
the pitch direction. We also evaluate our algorithm on the FRGC v2.0 dataset,
which contains a large number of co-registered face images and 3D meshes with
controlled and uncontrolled lighting conditions.
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Fig. 2. Depiction of the unlighting results. The first and fourth rows depict the original
face textures in the UV space. The second and fifth rows depict the self-ratio images.
The third and sixth rows depict the unlit face textures using our method.

5.2 Illumination Normalization

Figure [2] depicts the comparison between the self-ratio and the proposed algo-
rithm. It can be observed that the lighting effects on the unlit facial texture is
reduced and distributed more evenly than those on the raw facial texture. When
compared to the images form the self-ratio method, the lighting effects are more
constant across our unlit images and the image energies of our relit textures
are similar. This is because the lighting ratios adjust the overall intensity lev-
els to the preset I,,. In addition, the low-pass filtering designates image-specific
parameters for the low-pass filter leading to a more accurate estimate of the
subject differences lighting conditions, thus the differences among unlit textures
are mainly caused by identifications.
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Fig. 3. Depiction of the ROC curves on the (a) UHDBI11 dataset; (b) FRGC dataset

5.3 Face Recognition

Figure [B(a) depicts the ROC curves for six different methods tested on the
UHDBI1 dataset: (i) computing the distance metric for a relit texture using
the method in [3]; (ii) computing the distance metric for the unlit texture by
the proposed algorithm; (iii) computing the distance metric for the self-quotient
image method proposed in [I8]; (iv) computing the distance metric for the raw
texture output from texture lifting; (v) computing the distance metric for the
unlit texture using the albedo estimation method proposed in [25]; and (vi)
using the 2D-2D PittPatt [26] face recognition system. The verification rates
at 1073 FAR are 64.1%, 68.9%, 61.0%, 52.3%, 54.2% and 13.8%, respectively.
The gap in performance between PittPatt and other algorithms is due to pose
variations in the dataset, since the other algorithms use the lifted texture in UV
space with pose normalized while PittPatt recognition is performed on the face
ROI detected from original images. The method proposed by Biswas et al. [25]
results in an increased verification rate compared to the raw lifted texture. One
possible reason for the relatively low performance is that their method requires
a training dataset to learn the pixel intensity statistics and our training dataset
is not the same as theirs. Our method has demonstrated improvement over the
self-quotient method because of a better estimation of lighting conditions via
the image-specific low-pass filtering and a better normalization process with the
adoption of parameters o and 5. Compared to the relighting method which
requires the 3D face geometry, our algorithm still demonstrated its effectiveness
by achieving 5% higher on verification rate.

To test the robustness of the proposed method, we also evaluated our algo-
rithm on the FRGC v2 dataset. We used the same experimental setup as the
one used in the Al-Osaimi study [4] (the same 250 facial scans from 250 subjects
as the gallery and 470 facial scans as the probe). Figure B(b) depicts the ROC
curves using raw and normalized scores from our illumination normalization al-
gorithm. Our algorithm achieves verification rates of 30.0% and 53.8% at 0.001
False Accept Rate. Compared to the verification of 20.43% and 34.89% achieved



228 X. Zhao, S.K. Shah, and I.A. Kakadiaris

in [], shown as the red and green dot lines in FigBb, the proposed approach
performs better.

6 Conclusion

We proposed a novel approach to normalize illumination conditions on facial tex-
tures, without requiring 3D geometry information and prior knowledge of lighting
conditions. This method has been incorporated into a 3D-2D face recognition
system, thus providing the capacity to handle illumination variations on faces
with different poses. We tested the algorithm on the UHDB11 and FRGC v2.0
datasets, and the results demonstrate its robustness and accuracy.
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