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Abstract. In this study, novel techniques are presented addressing the challenges 
of stereo matching algorithms for surveillance and vehicle control. For this 
purpose, one of the most efficient local stereo matching techniques, namely 
permeability filter, is modified in terms of road plane geometry and temporal 
consistency in order to take the major challenges of such a scenario into account. 
Relaxing smoothness assumption of the permeability filter along vertical axis 
enables extraction of road geometry with high accuracy, even for the cases where 
ground plane does not contain sufficient textural information. On the other hand, 
temporal smoothness is enforced by transferring reliable depth assignments 
against illumination changes, reflections and instant occlusions. According to the 
extensive experiments on a recent challenging stereo video dataset, the proposed 
modifications provide reliable disparity maps under severe challenges and low 
texture distribution, improving scene analyses for surveillance related 
applications. Although improvements are illustrated for a specific local stereo 
matching algorithm, the presented specifications and modifications can be 
applied for the other similar stereo algorithms as well. 

1 Introduction 

The advances in robotics and automation introduce new application areas for stereo 
matching that provide 3D data from two cameras. In this manner, the passive 
technology behind such a scheme enables stereo matching [1] to be the most common 
way of depth extraction, especially for outdoor scenes through simple data acquisition 
capability. Moreover, current benchmarks [2] enabled stereo matching algorithms to 
improve rapidly by providing objective comparison with the available ground truth 
depth maps. On the other hand, these datasets have limited realism and may not model 
the characteristics of the real world data that involve various imperfections. Hence, new 
challenges are introduced in [3] for stereo matching to provide robust solutions against 
non-Lambertian surfaces, different lightening conditions, and complex scenes. These 
challenges require modifications over the well-known stereo matching algorithms. 
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Among many alternatives [1], local stereo matching techniques [4]-[10] have been 
popular recently due to low memory requirement, non-iterative computation and 
moderate quality. As pioneered by the well-known bilateral filter (BF) [4], edge-aware 
filters are excessively utilized to aggregate cost functions of disparity candidates to 
enforce smoothness among color-wise similar regions for disparity maps. However, it 
is expensive to provide content adaptability, since filter coefficients alternate according 
to image statistics, which requires special attention for each pixel individually. 

Several approximations over bilateral filter are proposed in order to increase their 
efficiency. In [5], constant time computation of BF has been demonstrated yielding 
window size independency. One of the most efficient implementation is introduced in 
[6], in which piecewise linear approximation is provided through discritization of 
image intensities into a number of intensity levels. Content adaptive filtering is 
conducted for these levels which are defined as Principle Bilateral Filtered Image 
Component (PBFIC). Filtered values of the remaining levels are calculated by the 
linear interpolation of the two closest quantization levels to the pixel intensity.   

In [7], an alternative edge-preserving filtering technique is presented, denoted as 
image guided filtering, in which adaptive weights are provided by a local linear model 
between the guidance image and the filtered data. In another approach [8], guided 
image filtering is applied for stereo matching where the computational complexity of 
adaptive weights is reduced drastically by use of box filters over mean and variance of 
the cost volume.  As a different technique, orthogonal cross aggregation is exploited 
by considering connected pixel groups having similar intensity characteristics [9]. The 
aggregation is performed by two passes in vertical and horizontal direction over 
integral images, which approximates BF by constant weights along arbitrary regions. 
This approach is recently extended to soft weights by [10] through recursive horizontal 
and then vertical weighted summation. In [10], for each pixel aggregation is effectively 
provided among connected support regions with soft weights. The recursive structure 
in [10] enables complete content adaptability yielding competitive performance based 
on Middlebury stereo benchmark.  

In this study, permeability filter (PF) introduced in [10] is modified for stereo 
matching among challenging videos that involve various imperfections. Giving a brief 
summary for permeability filter and its implementation for stereo, details of the 
modifications for real world data are given in the following section. In Section 4, 
experimental results are presented for challenging stereo videos, and Section 5 is 
devoted to the concluding remarks.   

2 Permeability Filter 

In [10], an efficient approximate edge-aware filter is introduced engaging 
computationally efficient two pass integration approach by weighted and connected 
support regions. The main motivation behind PF is to calculate the output as a result of 
infinite impulse response (IIR) type filter in a recursive manner. For this purpose,  
successive weighted summations are conducted among horizontal and vertical axes that 
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yield adaptive 2D aggregation. The weights (µ) correspond to pixel similarities, i.e. 
data transfer rates among four neighboring pixels (N4(x)) given as  
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where I(x) indicates the intensity value of the pixel with index of x and σ corresponds to 
the smoothing factor. 

Successive weighted summation (SWS) rules for horizontal filter are given as, 
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where C(x) corresponds to the data to be filtered (vertical index, y, is dropped for 
simplicity), CLtoR and CRtoL are the left-to-right and right-to-left aggregations; when the 
scans are completed, the input is updated by the unification of these values that 
provides horizontal accumulation, CH(x). The same update and progress rule is utilized 
along vertical axis to extend supporting regions to 2D as follows:   
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Top-to-bottom (CTtoB) and bottom-to-top (CBtoT) aggregations are conducted on the 
horizontally filtered data and the final aggregated cost, CF, is obtained by summing 
both as given in (3). This approach has some similarities with separable 
linear-time-invariant (LTI) filters based on the orthogonal decomposition. The 
characteristics of the permeability filter depend on the transfer rate distribution of 
pixels, in which data penetration is prevented along low weights (edges) and permitted 
along smooth color variation that provide high transition rates.  

The effective filter coefficients for two pixels are illustrated in Figure 1 after 
horizontal and vertical SWS. It is important to note that the support regions are not 
restricted by any pre-defined window sizes which provides complete content 
adaptability. In Figure 1.a, the effective horizontal weight distribution of each pixel on 
the same column is given, where lighter regions correspond to higher weights. It is clear 
that color-wise smooth regions provide  high correlative supports within, and the data 
transfer is prevented along edge regions. In Figure 1.b, vertical effective weights of the 
corresponding pixels are illustrated which are the result of two pass vertical transfer. 
The final 2D effective support weights in Figure 1.c are constructed by further 
weighting horizontal support region with vertical weights.  

The effect of PF can be simulated by direct calculation of weighted summation 
through the supporting weights in Figure 1.c which correspond to contribution of 
neighboring pixels. However, compared to direct implementation, a permeability filter 
requires only six additions and four multiplications per pixel.  
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Fig. 1. (a) Horizontal effective weights of the pixels on the same column, (b) vertical effective 
weights for squared pixel, (c) 2D effective weights after horizontal and vertical SWS 

2.1 Stereo Matching via PF 

Application of an edge-aware filter to local stereo matching is provided by conducting 
aggregation on disparity dependent cost functions. For this purpose, pixel-wise cost 
values of each disparity candidate are calculated as follows: 
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where Cd
SAD(x) corresponds to the SAD cost value of the pixel (x) in the left image for 

disparity d, Ileft and Iright are left and right images. For the census measure Cd
CENSUS(x,y), 

Hamming distance (Ham(.)) between the bit streams of the correspondences in the 
Census Transformed images (CT) is calculated. This step involves noisy measures that 
yield insufficient correlation between candidate pixel matches in left and right images. 
Hence, these cost values are filtered, especially through edge-aware filters, to provide 
crisp and reliable correlation measures. Then, for each pixel the disparity candidate 
with minimum filtered cost is determined which finalizes the initial disparity 
estimation. These operations are conducted for left and right pairs independently 
resulting in two disparity maps. The consistency between stereo pairs is enforced by 
cross check and occlusion handling steps. 

As analyzed in [11], each step has an influence on the quality of the estimated 
disparity maps. Among all, the most crucial step is the filtering of cost values that 
determines the computational complexity and accuracy of the algorithms. In [10], it 
has been shown through experiments on well known Middlebury stereo pairs that 
permeability filter is one of the most efficient techniques providing comparable even 
better performance against various edge-aware filters. Besides, an extensive 
discussion is given in [12] for the utilization of various cost functions. According to 
[12], unification of sum of absolute difference (SAD) and Census transform (CT) yield 
robust measures providing high quality estimates compared to the remaining cost 
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functions. Tough, in this study, permeability filter and SAD+CT measure are 
considered as the fundamental tools for cost calculation and aggregation steps.   

It is agreed that the real world data have several imperfections that affect the 
performance of stereo matching algorithms. In this manner, direct application of 
state-of-the-art techniques for challenging data might not provide reliable estimates, 
since they are developed on well-defined static stereo pairs with reduced imperfections, 
such as Middlebury stereo benchmark [2]. Typical results for direct application of 
SAD+CT based cost calculation and PF [10] are illustrated in Figure 2 and Figure 3 
addressing lack of texture, high occlusion and temporal inconsistencies. It is obvious 
that the performance of stereo matching is not sufficient to determine scene geometry. 
Though, several modifications are required over traditional local approaches to obtain 
robust stereo matching for real world data having imbalances between left-right pairs. 

 
Fig. 2. (a), (c) two frames with lack of texture, (b), (d) estimated disparity maps involve 
resolution and quantization loss 

 
Fig. 3. First row: Three consecutive frames involving large occluded regions and texture 
inconsistencies, second row: erroneous disparity maps due to imperfections 
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3 Proposed Stereo Matching Algorithm 

In this study, a stereo matching algorithm dedicated to surveillance and automatic 
vehicle control applications is introduced. The real world data for these types of 
applications involve various inconsistencies between stereo pairs and along 
consecutive frames corresponding to spatial and temporal imbalances. In order to 
develop reliable stereo matching techniques for these types of data, specific scene 
structure and requirements should be analyzed that determine fundamental road maps 
for algorithm development. Thus, an analysis is given in the following section 
addressing the specific problems and characteristics of the input stereo data. Then, 
several modifications are proposed to boost up stereo matching performance. 

3.1 Constraints on Surveillance and Vehicle Control Application  

For the problem of surveillance and vehicle control, stereo camera is ported in front of a 
car and the road is observed by this camera setup. Two fundamental aims in such a 
scenario are estimation of 3D structure of the road terrain and distances of the vehicles 
in the field of view at a time instant. These aims yield two implications; high disparity 
differences are observed among pixels on the same column with different vertical 
coordinates due to the orientation of road ground plane (as illustrated in Figure 4) and 
scene change is not severe among consecutive frames due to physical limitations on the 
vehicle speed.  

The first implication contradicts with the smoothness assumption of the stereo 
matching algorithms, enforcing the same disparity levels among color-wise similar 
neighbor pixels. The disparity variation might be lost during local stereo matching due 
to uniform texture variation on the road. The similarities between pixels yield same 
disparity levels introducing compaction as illustrated in Figure 2.b-d. This case is also 
valid under extreme lightening conditions such as night views and flare situations. 
Therefore, a relaxation is required to allow disparity changes.  

The second implication enforces temporal smoothness between consecutive frames 
by cumulating temporal data, which increases robustness and accuracy of the 
estimation. Though, each frame should be related to the previous frames instead of 
independent operations. 

 

 

Fig. 4. Marked pixels with almost same intensity values on the same column have 21 disparity 
level differences in the disparity map 
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3.2 Proposed Improvements 

In order to address aforementioned spatial and temporal specifications, two 
improvements are introduced for permeability based stereo matching.  

3.2.1   Spatial Improvements 
In order to relax smoothness of pixels only in vertical direction, a vertical damping 
factor is included during SWS along vertical axis. This goal is achieved by updating the 
formula in (3) as follows: 
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where constant λ scaling is applied to the update term involving previously aggregated 
values in vertical direction. The effect of this parameter depends on the vertical 
distance between two pixels which is observed as a power term. Actually, this term can 
be considered as a spatial range function in vertical axis which damps the accumulation 
of cost values independent of color-wise similarity. In this way, vertical aggregation is 
softened enabling disparity variation between vertical neighboring pixels with same 
texture characteristics. The relaxation of disparity values eliminates compaction of 
disparity levels providing smoothly varying road terrain. It is important to note that 
scaling factor affects the degree of relaxation which should be limited to preserve 
smoothness of the disparity map.  

In Figure 5, the effect of scaling factor on the distribution of effective aggregation 
weights is illustrated for three pixels on different types of scenes from the challenge 
database [3]. The support regions for the corresponding pixels extend to distant pixels 
in vertical direction due to lack of texture, in which pixels are forced to be located on 
the same disparity levels. On the other hand, utilization of a damping factor limits the 
support regions along vertical axis, yielding relaxation. It is clear that as λ decreases, 
support regions tend to shrink and after a certain level vertical aggregation is not 
observed. The effect of vertical damping on disparity estimation is illustrated in Figure 6 
in which disparity resolution is preserved with the introduction of vertical scale. As 
expected, noise artifacts are observable when the scale factor is decreased below a 
certain level. According to parametric analyses, setting λ to the value 0.9 is optimal to 
provide a balance between disparity resolution and smoothness.      

3.2.2   Temporal Improvements 
Treating each frame in a stereo video independently is a sub-optimal solution to 
provide disparity. In such a case, flickers and inconsistencies within disparity maps of 
consecutive frames could be observed which decreases accuracy of estimation. 
Therefore, relations between following frames should be exploited to provide 
consistent estimates. 
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Fig. 5. (a) Intensity views; effective weight distribution for marked pixels via (b) no vertical 
scaling (λ=1.0) , (c) λ=0.95, (d) λ=0.9 and (e) λ=0.8 

  

Fig. 6. Estimated disparity maps via (a) no vertical scaling, (b) λ=0.95, (c) λ=0.9 and (d) λ=0.8 

Based on the analysis given in Section 3, it can be argued that instant scene changes 
are not expected in stereo video captured by a system installed within a car. Hence, 
temporal smoothness among consecutive frames is a valid assumption. On the other 
hand, flares or reflections, as well as windshield wiper on a vehicle, introduce observable 
changes in the captured video as illustrated in Figure 3. During frame-by-frame 
processing, these types of cases cannot be handled that degrades estimation accuracy, 
whereas exploiting temporal data should improve the performance. 

For this purpose, two modifications are proposed in this study that aims to transfer 
reliable data along time axis. Stemming from the assumption of temporal smoothness, a 
conventional scene change analysis technique is applied by comparing histograms of 
two consecutive frames. Under normal conditions in which reflections, flares and other 
sources of disturbances do not introduce inconsistency; hence, histogram change is 
expected to be limited. On the other hand, there is significant difference in the 
histograms for unexpected scene changes. Typical frames with high histogram changes 
are illustrated in Figure 7 for three different stereo video. 
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As the first step, the percentage of histogram change is calculated between previous 
and current frames as follows: 
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where N is the total number of pixels, Histt is the histogram of the frame at time instant 
t. The rate of change (Δ) is utilized as a weighting function to model in temporal 
transfer of data relating permeability weights. Hence, permeability weights in the 
current frame are weighted by the permeability values in the previous frame as follows: 
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where tμ is the permeability vector involving weights in four fundamental directions 

for time instant t. The update formula in (7) enforces utilization of permeability weights 
in the current frame, as long as significant scene change is not observed. On the other 
hand, when there is significant scene change, which is not an expected case, 
permeability weights of the previous frame are utilized. Once the weights are 
calculated, histogram of the current frame is updated by the change factor for the 
analysis of the next frame as follows: 
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Fig. 7. Inconsistent frames yielding significant changes in histogram for three different scenes 
given in the first column 

The histogram update in (8) provides robustness against multiple inconsistent 
consecutive frames. Therefore, data from the last reliable frame is transferred to the 
frames involving severe flares, reflections and sudden large occlusions as soon as a 
consistent frame is encountered with similar histogram characteristics. 

The other temporal modification is provided by enforcing smoothness of disparity 
values along pixels with low intensity change between consecutive frames. For this 
purpose, temporal permeability weights are calculated for each pixel as, 
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where It is the intensity image for time instant t, σ is a scaling factor (set as 16). 
Temporal permeability relates the change of the corresponding pixel in time, which is 
utilized to enforce disparity values of the previous frame to the estimation of current 
disparity value. This is provided by including a smoothness term in the cot function as  
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where d is the candidate disparity value and Dt-1(x) is the estimated previous disparity 
value of pixel x.  

4 Experimental Results 

The improvement of stereo matching performance is validated by utilization of a recent 
challenging stereo video dataset provided by [3]. Algorithm parameters are kept 
constant among all video sequences as well as same intermediate steps are utilized for 
the original and modified versions of PF based stereo matching. The evaluation of 
estimation performance is provided by visual comparison including spatial and 
temporal consistency due to lack of ground truth disparity maps. For this purpose, 
estimated disparity maps are illustrated in Figure 8 to Figure 11 for 4 different 
challenging videos. For the sake of completeness, disparity maps for five instants with 
5-10 frames differences are illustrated. 

In Figure 8, results of the Crossing Cars [3] sequence are shown, that involve 
consistent frames with no specific visual artifact. In the second row and third row 
disparity estimates with and without the proposed modifications in Sections 3.2.1. and 
3.2.2 are illustrated. The effect of modifications is observable for temporal consistency 
of the disparity assignment of the regions below the moving car.  

On the other hand, in Figure 9, for Night and Snow [3] sequence involving lack of 
texture and severe lightening changes, spatial and temporal modifications boost-up 
stereo matching performance. Proposed vertical damping (λ=0.9) yield spatially 
smooth ground plane, which is especially observable in 4th and 5th frames. Besides, 
estimated disparity maps are consistent among time, which is robust against changes 
due to headlights of cars and effects of windshield wiper.  

The results of Rain Blur [3] sequence are illustrated in Figure 10. Lack of texture, 
reflections from wet road and motion of windshield wiper are the main causes of 
challenges in Rain Blur sequence. According to visual interpretation, it is obvious that 
modifications improve quality and consistency of disparity maps with increased 
disparity resolution and robustness against temporal fluctuations. However, reflections 
are still problematic due to insufficiency of cost function that is valid for each frame.   

The effect of sun flares is observed in Sun Flare [3] sequence, introducing severe 
degradation in disparity estimation, when spatial and temporal modifications are not  
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exploited. On the other hand, temporal modifications especially increase reliability of 
estimation process providing for this sequence. This improvement is clearly observable 
as the strength of sun flare increases.     

The robustness against windshield wiper motion and rain flares is further illustrated 
in Figure 13 for the Rain Flare [3] sequence. Modifications on [10] provide obvious 
improvement on the estimated disparity maps.  

 
 

 

Fig. 8. First row: 5 frames from Crossing Cars sequence, second row: disparity maps via [10], 
last row: proposed stereo matching results after spatial and temporal modifications 

 

Fig. 9. First row: 5 frames from Night and Snow sequence, second row: disparity maps via [10], 
last row: proposed stereo matching results after spatial and temporal modifications 
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Fig. 10. First row: 5 frames from Rain Blur sequence, second row: disparity maps via [10] last 
row: proposed stereo matching results after spatial and temporal modifications 

 

Fig. 11. First row: 5 frames from Sun Flare sequence, second row: disparity maps via [10], last 
row: proposed stereo matching results after spatial and temporal modifications 

Apart from visual quality, the proposed approach enables prompt processing with 
low computational complexity and memory requirement. In this manner, temporal data 
is transferred by only keeping the previous disparity map rather than full cost volume 
that requires large memory. Besides, as shown in [10], permeability filter is one of the 
most efficient edge-aware filtering techniques in literature. In table 1, computation time 
of aggregation via permeability filter and the well known guided filter [7] are illustrated 
for a pair with resolution of (720x576) on a 3.06GHz Intel Core i7 CPU with 6 GB 
RAM. During experiments, the number of disparity candidates is set to 50. It is clear 
that, permeability filter enables almost 12 times faster operation compared to guided 
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filter. This is an expected result according to the required number of additions and 
multiplications for aggregation, such that permeability filter exploits six additions and 
four multiplications, while guided filter involves 107 additions and 43 multiplications 
on the average. 

Table 1. Computation time comparison for aggregation of 50 disparity candidates on stereo pair 
with size of 720x576 

Computation time 
(msec) 

Permeability Filter 
[10] 

Guided Filter 
[7] 

720x576x50 1034 12720 

5 Conclusion 

In this study, a novel approach is presented for providing spatial and temporal 
improvements for stereo matching algorithms that improves estimation accuracy for 
challenging videos. Specifically dedicated to automatic vehicle control and surveillance 
applications, the proposed modifications exploit general scene characteristics of stereo 
video captured by a camera imported in front of a car. The specifications of road plane 
geometry and temporal consistency between consecutive frames enable further 
assumptions for stereo matching to increase robustness against several imperfections, 
such as lack of texture, sun flare, rain flare, reflections, changing lightening and 
occlusions due to motion of windshield wiper. For this purpose, some modifications are 
provided for the stereo matching algorithm introduced in [10], that is one of the most 
efficient local techniques. In this manner, a vertical damping scale is included relaxing 
smoothness of disparity maps along vertical axis which prevents disparity resolution loss 
due to lack of texture. Besides, temporal consistency is enforced by scene change analysis 
and transfer of reliable data to consecutive frames. According to the extensive 
experiments on a recent challenging stereo video dataset, the proposed modifications 
provide reliable disparity maps under severe challenges and low texture distribution 
improving scene analyses for surveillance related applications.   
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