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Abstract. Stereo systems, time-of-flight cameras, laser range sensors
and consumer depth cameras nowadays produce a wealth of image data
with depth information (RGBD), yet the number of approaches that can
take advantage of color and geometry data at the same time is quite
limited. We address the topic of wide baseline matching between two
RGBD images, i.e. finding correspondences from largely different view-
points for recognition, model fusion or loop detection. Here we normalize
local image features with respect to the underlying geometry and show a
significantly increased number of correspondences. Rather than moving
a virtual camera to some position in front of a dominant scene plane, we
propose to unroll developable scene surfaces and detect features directly
in the “wall paper” of the scene. This allows viewpoint invariant match-
ing also in scenes with curved architectural elements or with objects like
bottles, cans or (partial) cones and others. We prove the usefulness of
our approach using several real world scenes with different objects.

1 Introduction and Previous Work

Utilizing image based features to compactly describe image content or to iden-
tify corresponding points in images has become a de facto standard in computer
vision over recent years. Applications where a feature based approach proved par-
ticularly successful are for example structure-from-motion, image registration,
visual SLAM systems or object detection and recognition. However, a major
problem when trying to find correspondences between widely separated views is
that the appearance of objects can change drastically with viewpoint. To remedy
this problem techniques have been developed which normalize images or image
regions such that they become (at least approximately) invariant to viewpoint
changes. In case one matches two images (without depth information) against
each other the most popular method is to use local image features that compen-
sate for the first order effects of viewpoint change by normalization, i.e. affine
transformations (cf. to [1,2]) or slightly weaker models (e.g. [3]). Since scale,
orientation and (anisotropic) stretch are all effects that could have been caused
by a viewpoint change they need to be factorized out and therefore it is not
possible to distinguish, e.g. real-world circles from ellipses or a small round dot
from a huge sphere any more. This is a general dilemma of discriminative power
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Fig. 1. Examplary objects and their developed surfaces. To normalize wrt. viewpoint
changes we propose to detect and describe features in the unrolled surface textures
rather than in the original images.

vs. invariance. For an in depth discussion of invariant feature constructions we
refer the reader to [4].

When depth information is available one can normalize wrt. the given 3D
structure. In [5,6] the authors have shown that it is possible to virtually move
a camera to a frontal view and then render a canonical representation of a
local image feature. Similarly, normalization can also be obtained by extracting
vanishing points in Manhattan scenarios [7,8] and virtually rotating the camera.
However, all these approaches have strong limitations: While [5] still requires
an affine detector and thus the number of features obtained is limited, other
approaches [6,7,8] rely on the existence of dominant scene planes. In contrast
to this assumption we observe that many structures in our environment are
also curved, e.g. like cylinders, cones or consist of free-form shapes. Many man-
made objects are made by bending sheets or plates and thus - by construction -
form developable surfaces that can virtually be “unrolled” when their geometric
structure (depth) is known (see Fig. 1). For the particular application of pose-
robust face recognition, Liu and Chen [9] coarsely approximate a human head
via a 3D ellipsoid and back-project images onto its surface. Recognition is then
conducted in the flat, but stretched and distorted texture maps. In comparison,
we are interested in objects possessing developable surfaces and by this allow to
create an undistorted texture map.

Further, in this work we follow the idea to develop such observed scene sur-
faces and to extract image features in the flat 2D wall-paper version of that
very same surface, allowing for less invariant (and more discriminative) detec-
tors/descriptors. In case scale is known (e.g. from a Kinect camera) the affine or
perspective invariance requirement of the original problem is reduced to rotation
in the image plane and can be reduced even further for surfaces such as cones
or cylinders. We strongly believe that this technique is useful in several appli-
cations such as robotic scenarios, where a robot has to identify and manipulate
an object, for automatically registering overlapping 2.5D or 3D models or loop
detection in large structure-from-motion or SLAM systems.

The paper is organized as follows: Developable surfaces are discussed in Sec. 2,
while Sec. 3 presents our algorithmic approach and Sec. 4 states implementation
details. In Sec. 5 we illustrate experiments and results on both, data from active
and passive consumer depth sensors, followed by concluding remarks.
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Fig. 2. Developable surfaces present in our environment. Note, that in the left image
only cones are highlighted although planes and cylinders exist as well.

2 Developable Surfaces

As our approach builds on the notion of developable surfaces, we start by briefly
introducing the underlying concept. In general a surface with zero Gaussian
curvature at every surface point is developable [10] and can be flattened onto a
plane without distortion (such as stretching or shortening).

To determine the Gaussian curvature of a surface, suppose we are given a
smooth function s that maps 2D parameters u, v to points in 3D space, i.e.
s : R2 → R

3 such that s(u, v) = (x, y, z)T . The graph S of this function is a
two-dimensional manifold and our surface of interest in 3D space. The derivatives
su = ∂s

∂u and sv = ∂s
∂v of s with respect to the parameters u and v define tangent

vectors to the surface at each point. Their cross product yields the normal vector
n = su × sv to the surface. The second partial derivatives of s with respect to
u, v are now used for constructing the shape operator

II =

(
L M
M N

)
=

(
nT suu nT suv
nT suv nT svv

)
, (1)

which is also called the second fundamental form of s. The principal curvatures
κ1, κ2 of the surface at a given position are defined as the eigenvalues of II. They
measure how the surface bends by different amounts in different directions at a
particular point. Finally, the determinant det(II) = κ1κ2 denotes the Gaussian
curvature; in case it vanishes everywhere on the surface (at least one of the
eigenvalues is zero) the surface is developable. The intuition is that in direction
of zero curvature the surface can be described as a line. Hence, the surface
development is just an unrolling of all corresponding lines into one plane. We
refer the interested reader to [10] for more details.

For example a cylinder is developable, meaning that at every point the curva-
ture in one direction vanishes. Its mean curvature is not zero, though; hence it
is different from a plane. Contrary, a sphere is not developable, since its surface
has constant positive Gaussian curvature at every point. Other basic developable
shapes are planes, cylinders, cones and oloids1 and variants thereof, such as cylin-
droids, or oblique cones. Intuitively, they are flattened by rolling the object on
a flat surface, where it will develop its entire surface. In fact, all surfaces which

1 An oloid is defined as the convex hull of two equal disks placed at right angles to
each other, so that the distance between their centers is equal to their radius.
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are composed of the aforementioned objects are developable as well. In practice,
many objects in our environment are made by bending sheets or plates and thus
form developable surfaces. Fig. 2 illustrates several real-world developable sur-
faces; note that even such complex structures as the church roof top (Fig. 2 very
right) are (piece-wise) developable.

3 Exploiting Developable Surfaces for Viewpoint
Invariant Matching

In the following we present our approach of matching two views of a rigid scene,
separated by a wide-baseline, by means of developable surfaces. However, we
point out that the same techniques are applicable for identifying and recognizing
a single object in a database, for loop detection or for automatically registering
multiple overlapping textured 3D models. As input to our algorithm we assume
two RGBD images with sufficient overlap. Given pixel-wise depth measurements
du,v and camera intrinsics K a 2.5D point cloud is obtained per view via

(x, y, z)Tu,v = K−1(u, v, 1)Tdu,v ∀u, v ∈ I, (2)

with image coordinates u, v. Then our method progresses in four steps, which
are (a) detection and parameter estimation of certain developable surfaces in
the depth data, (b) generating flat object textures by means of developing the
detected surfaces, (c) detecting/describing features in the unrolled images (i.e.
in the surface) and matching against the other views, and (d) verification of
found correspondences. We will explain them in more detail in following Sec. 3.1
to 3.4.

3.1 Multi-model Estimation

As described in the previous Sec. 2, many different developable surfaces exist.
In this paper we focus on three basic shapes, the plane, the cylinder and the
cone, because these shapes possess a low parametric representation and thus are
detected reliably in depth data. Identifying these surfaces falls into the category
of multi-model estimation and several techniques have been suggested to cope
with it, including randomized hough transform, sequential RANSAC or more re-
cently J-Linkage [11], multi-structure segmentation [12] or more problem-specific
machine-learning inspired geometric classification approaches in the spirit of [13].

3.2 Developing Surfaces

Subsequent to the initial model estimation and parameterization is the gener-
ation of a flat texture per detected model. We describe obtained mappings for
principal geometric shapes in the following.
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Fig. 3. (left) Cylinder with height h and radius r and its developed texture of dimen-
sions h× 2πr. (right) Cone with height h and radius r and its developed texture with
radius d. Note that angles φ around cone axis and β in developed texture differ by r

d

and thus a 360 turn of the cone does not describe a full circle.

Planes. From the previous model estimation (Sec. 3.1) we know a four parameter
description πS = (nT, d) with normal vector n and distance to the origin d, as
well as a bounding box (or mask) for the region of interest on the 3D plane. Two
orthogonal vectors u,v in the plane are chosen as a basis BS and we sample
the plane in equidistant steps, i.e. we define a grid in the plane. Original image
plane πI and surface plane πS together with the origin of BS define a unique
mapping P. It is used to project each of the grid vertices (ui, vj) into the original
image to obtain the appropriate color. The resolution is chosen such that we do
not lose any image details; this means we project the four bounding box corners
into the original image and evaluate the Jacobian matrix of the texture warp
for some arbitrary grid resolution. Afterwards we increase or decrease the grid
resolution such that the smallest minification between the developed surface and
the original image is 1 (for details on texture mapping see [14]). In practice the
transformation P will be a homography and the result is equivalent to [6]. Here,
the frontal view of the plane coincides with the developed plane, however we will
now generalize this to other developable surfaces.

Cylinders. After model detection a cylinder is parameterized as (c, a, r) with
cylinder base center c, axis vector a of length h and radius r. In order to unroll
the cylinder we represent 3D points on the surface in their cylinder coordinates
(r, φ, z) (with c as the origin). By removing the radius coordinate we obtain
a 2D parameterization (φ, z) of the surface. The projection of surface points
into the image plane πI is thus defined by a unique mapping P. The angular
resolution in φ is determined to match the resolution along the cylinder axis
and to obtain an image of aspect ratio h × 2πr for a full 3D development of
the cylinder (see Fig. 3). In case scale is known (e.g. when a Kinect camera is
used) and when it is desirable not to normalize over scale (e.g. because of simi-
lar features at different scales) we choose a metric surface resolution. Otherwise,
we evaluate the local magnification/minification between the original image and
the surface texture and ensure that no resolution is lost during unrolling. Given
2D coordinates (φi, zj) in the unrolled surface texture, each corresponding 3D
surface point (r, φi, zj) is identified and projected into the original image via P
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to obtain the color. This mapping is very efficiently implemented on the GPU
or using standard backward mapping on the CPU.

Cones. A cone is parameterized and developed very similarly to the cylinder,
taking into account that the surface tappers smoothly towards the apex. To
obtain a flat surface texture, it is positioned with a line from the apex to the
base circle of length d =

√
r2 + h2 (see Fig. 3) in the plane for development

(imagine laying it on a piece of paper). Afterwards the apex is fixed and the
cone rolled around it, resulting in a circle segment. The created circular texture
contains the apex in the center, where the radial lines connect the apex with the
cone’s base circle (consequently of radius d, up to resolution). Thus 2D texture
coordinates (βi, dj) are directly related to points on the cone surface. Similar to
the cylinder, we backward map texture coordinates across the 3D surface into
the original image to obtain the colors for the surface texture, maximizing its
resolution.

3.3 Feature Detection and Matching

Feature detection is performed directly in the unrolled textures. This is concep-
tually different to [1,5] which first detect features and then try to normalize these
wrt. to viewpoint variations. It is related to [6,7,8], however these approaches
only consider planes for normalization. The unrolled textures allow to reach
perspective invariance with only normalizing in-plane rotation in the image (or
similarity normalization in case absolute scale is unknown). Even better, since
cylinder2 and cone define an inherent reference direction with their axis, all fea-
tures can be expressed with respect to this orientation rather than computing
an orientation from the local region as for example in SIFT [3]. Consequently it
is possible to extract very basic features on the surface, which is very fast on the
one hand and on the other hand allows to distinguish local regions that differ
only by scale, orientation or linear shape. All detected features on the different
developed textures are combined to form the set of features for a RGBD image
and are subsequently used for wide-baseline matching.

3.4 Correspondence Verification

Naturally the set of estimated matches contains numerous outliers, which do
not satisfy the underlying camera pose change. Therefore, correspondences are
checked using geometric verification (e.g. using RANSAC). As observed in [6],
each feature does not only include information about the 3D position, but also
the local normal. Additionally, when orientation is known from the cylinder or
cone geometry or when local orientations are estimated from gradients [3], three
characteristic directions are known at each 3D feature point. This allows for a
stratified verification as in [6] or for a minimal solution in RANSAC that requires
only a single correspondence.

2 For the cylinder there is still a 180◦ ambiguity for the direction of the axis.
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4 Implementation Details

We employ RANSAC to obtain model parameters for planes, cylinders and cones
in the captured RGBD data. Since surfaces are mostly local and continuous we
utilize a local sampling strategy, where consecutive samples are drawn within a
0.5m radius. Surface models are searched for in order of increasing complexity,
i.e. initially planes are detected, followed by cylinders and cones. We limit the
size of models to physically plausible extents for the expected outdoor or in-
door environments. In addition, found models need to guarantee that they show
sufficient support over their surface to avoid algorithmic plausible, but incor-
rect estimations. Consequently, we reject models whose support is only defined
at isolated points or clusters. Once detected, we robustly determine the model
size in the image and estimate the spatial extent (e.g. height of cylinder). Sub-
sequently, initial model parameters are updated via a non-linear optimization
on the evaluated inlier set. After each iteration 3D points supporting the esti-
mated model are removed from the search space, which prohibits assignment to
multiple models. This iterative procedure terminates as soon as no model with
sufficiently large support is found any more.

As mentioned in Sec. 3.3, image feature estimation in the developed surfaces
can be accomplished with a basic detector such as a Harris corner detector.
However, since we aim to compare obtained matches from developed surfaces
with matches in the original RGBD data, we chose standard SIFT as our detector
and descriptor to guarantee comparability. (Note, that employing upright-SIFT
would also treat our approach with favor due to its greater discriminative power.)
Detected image features are matched against each other in their descriptor space.
To eliminate ambiguous matches (e.g. between repetitive structures) all best
matches are kept for which the distance ratio to the second best match falls
below 0.6 (known as the ratio test in [3]). Then, each feature is additionally
augmented by its position in 3D space, which is determined by the corresponding
3D surface model (according to the derived mappings in Sec. 3.2). For features in
the original RGBD images we consider present pixel-wise depth measurements
and neglect them in case no depth is available, e.g. due to occlusions.

To obtain a robust estimate of correct matches, we employ a correspondence
rejection method via RANSAC, which samples from the feature correspondence
set and estimates a 6 DoF transformation between the two views. Since cor-
respondences between 3D points are explicitly defined, we utilize Procrustes
analysis [15] (and do not need an iterative non-linear optimization scheme) for
the estimation of rotation and translation. Finally, the estimated transformation
is validated on all potential correspondences, which gives a final set of correct
and consistent matches. These consistent matches are visualized in the different
experiments presented in the following.

5 Results for Active and Passive Stereo Devices

In this section we demonstrate our novel technique for different scenes and cam-
eras. Fig. 4, Fig. 5 and Fig. 6 illustrate obtained results for a synthetic setup,
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Fig. 4. Wide baseline matching for a synthetic setup. (top row) Outer left and right
image illustrate the found models in the 2.5D point cloud; images in-between show
developed textures. (bottom row) SIFT matches consistent wrt. the underlying 6DoF
transformation between the initial RGBD images and between developed surfaces.

Table 1. Quantitative comparison of SIFT descriptor matches between original RGBD
images and developed surfaces for different scenes

Scene type
Synthetic
setup

Floor
(Kinect)

Table
(Kinect)

Trees
(stereo)

Pylon
(stereo)

Matches orig. RGBD images 37 9 27 3 56
Matches developed surfaces 255 79 195 22 227

Enhancement ratio 6.89 8.78 7.22 7.33 4.05

indoors scenes captured with a Kinect camera and outdoor scenes taken with a
Fuji3D stereo camera, respectively. Rectified textures of detected planes are not
illustrated due to space limitations; though, they are included in the evaluation.

Comparing feature detection and matching in the original images and in the
images of developed surfaces (see Tab. 1) we can record the following: While
approximately the same number of features are detected and an equal amount
of potential matches is obtained, evaluation shows that for the latter the amount
of finally remaining correct matches is significantly larger. Between the original
RGBD images many potential matches are wrong due to viewpoint distortions
in the descriptor space and thus need to be rejected. This validates that our
approach of viewpoint invariant description of developable surfaces is able to ex-
tract features, which are stable over a variety of largely different viewpoints and
improves wide-baseline matching considerable. In addition, rather than inter-
preting our approach as a competitor to standard feature matching, one should
see it as an additional cue for obtaining more stable features.

6 Conclusion and Future Work

We have presented a novel technique to exploit depth information for viewpoint
invariant matching between RGBD images. It develops the surface and detects
features in the surface’s wall paper which removes perspective effects. While



70 B. Zeisl, K. Köser, and M. Pollefeys

Fig. 5. Wide baseline matching for RGBD data captured with a Kinect sensor (Floor
and Table scene). (1st and 3d row) Detected objects (green) and their respective devel-
oped surface for the two views. (2nd and 4th row) Consistent SIFT matches between
original images and developed surfaces, respectively.

Fig. 6. Wide baseline matching between images taken by a Fuji3D consumer stereo
camera (Trees and Pylon scene). (1st and 3rd row) Detected models in the 2.5 point
cloud and their respective developed surfaces. (2nd and 4th row) SIFT feature matches
between original scenes and developed surfaces, respectively. Note, that for the bottom
experiment depth estimates are noisy and contain a considerable amount of errors,
leading to degraded parameter estimation for the detected cone.
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we have shown drastically increased number of matches as compared to classical
SIFT, the feature detector can actually be chosen freely for the given application.
Scale can easily be integrated (when known from the range sensor) to allow for
using simple and more discriminative features such as Harris corners and in the
special case of cylinders and cones even in-plane rotation is known. In any case,
while we have demonstrated the approach as a competitor that outperforms
standard SIFT by far, it should be clear that both can easily be combined for
a real system. Compared to earlier viewpoint normalization approaches that
relied on global scene planes we have shown that many other geometric shapes
are feasible and demonstrated this using cones and cylinders. Possible further
work will include the extension from detectable parametric surfaces to flattening
of general (approximately developable) surfaces.
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