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Abstract. We propose an approach to model indoor environments from
depth videos (the camera is stationary when recording the videos), which
includes extracting the 3-D spatial layout of the rooms and modeling ob-
jects as 3-D cuboids. Different from previous work which purely relies on
image appearance, we argue that indoor environment modeling should
be human-centric: not only because humans are an important part of
the indoor environments, but also because the interaction between hu-
mans and environments can convey much useful information about the
environments. In this paper, we develop an approach to extract physical
constraints from human poses and motion to better recover the spatial
layout and model objects inside. We observe that the cues provided by
human-environment intersection are very powerful: we don’t have a lot
of training data but our method can still achieve promising performance.
Our approach is built on depth videos, which makes it more user friendly.

Keywords: Scene understanding, environment modeling, human-centric,
depth videos.

1 Introduction

In recent years, astonishing progress has been made in modeling indoor envi-
ronments [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. However, none of these
work considers humans living in the room. They estimate spatial layout of rooms
purely from image appearance, which turns out to be a challenging task. Indoor
environments are essentially built for humans, to afford humans’ daily activities.
The interaction between humans and environments can help tell us the essen-
tial information of the environments. As shown in Fig. 1, from a person who is
standing, we can roughly know where the floor plane is; from a person who is
sitting, we can roughly know where the chair is. Based on these observations,
we argue in this paper that modeling indoor environments should fully exploit
the cues provided by human-environment interaction. And human-environment
interaction is a long-term process because people interact with the rooms all the
time. Suppose we have a sensor installed in the room, then the life-long process
of human-environment interaction can provide us a huge amount of information
to help accurately model the environments. Our current experimental results are
based on videos which only last for several minutes. We believe the results will

A. Fusiello et al. (Eds.): ECCV 2012 Ws/Demos, Part II, LNCS 7584, pp. 42–51, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Human-Centric Indoor Environment Modeling from Depth Videos 43

Fig. 1. Our approach extracts the spatial layout of a cluttered room and represents
objects as 3-D cuboids in the environment from a depth video by exploiting information
from human-environment interaction. (a) Four frames of an indoor environment depth
video (the camera is stationary). (b) The modeling results.

be much more impressive if we record videos for several days or weeks, though
which is beyond the scope of a “proof of concept” research paper.

Our work is based on depth videos recorded by the Microsoft Kinect sensor,
different from previous work which is based on RGB images [1], [2], [3], [4], [5],
[6], [7], [8]. There are two advantages of using the Kinect: 1) depth videos can
better preserve the privacy information than RGB images/videos, which makes
this technique easier to be accepted by the public; 2) depth images record the
depth information, from which we can create a real 3-D model with more physical
meanings. In this 3-D model, we can know how big an object is, how far between
two objects, etc.

In this paper, we develop several methods to extract physical constraints from
human poses and motion. For example, from a sitting pose, we estimate the
support surface and know it must be from a sittable object. These constraints
are effectively used in a statistical framework to help estimate the spatial layout
of the environment and prune object hypotheses. We collect a number of depth
videos with different types of human-environment interaction. The experimental
results show that our method is very promising to solve this problem.

2 Overview of Approach

Given an indoor depth video (Fig. 2(a)), we estimate the spatial layout of the
room and model objects insides as 3-D cuboids simultaneously. Our approach
is illustrated in Fig. 2. Since the camera is stationary, the spatial layout of the
room in each frame of the video is the same. Hence, we adopt the median filter
[12] to recover the indoor scene background image (without humans inside) from
the video (Fig. 2(b)). There are some missing values in the original depth images,
we fill up each image by using a recursive median filter [13], [14]. We perform
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Fig. 2. Overview of our approach for indoor environment modeling. (a) Several frames
in the depth video. (b) Indoor scene background image. (c) The detected long line
segments and vanishing points of the scene background image. (d) Orientation map
of the scene background image. (e) Room hypotheses generated from the vanishing
points. (f) Object hypotheses generated from the orientation map. (g) Extracted human
silhouettes for each frame of the depth video. (h) Spatial layout and objects modeled
using the 3-D interactions between the room, objects, and humans.

line detection and vanishing points estimation on the scene background image
(Fig. 2(c)). The vanishing points define the orientations of the major surfaces
of the scene and provide constraints on its layout. Using these line segments
and the vanishing points, we generate multiple room hypotheses (Fig. 2(e)) [15].
Moreover, we obtain the orientation map (Fig. 2(d)) from these line segments
and vanishing points, and generate a number of object hypotheses (Fig. 2(f)).
On the other hand, we subtract the scene background image from each frame of
the depth video to obtain human silhouette (Fig. 2(g)). Then, we obtain human
pose information in each frame and motion information over the whole video.
Pose information is used to discover support surfaces, and motion information is
used to discover objects. Finally, we test human-room-object compatibility and
pick up the best compatible scene configuration over the whole video (Fig. 2(h)).

3 Generating Room and Object Hypotheses

A room hypothesis reflects the positions and orientations of walls, floor and
ceiling. In this paper, we adopt the idea of [4] to represent the spatial layout
of a room by a parametric model. Given a depth video, we first extract a scene
background image by removing humans to generate room and object hypotheses.
Fig. 2(b) shows the extracted indoor scene background image of the depth video.
Following [4], we detect long line segments in the scene background image and
find three dominant groups of lines corresponding to three vanishing points. By
sampling pairs of rays from two of these vanishing points, we generate room
hypotheses, and several of them are shown in Fig. 2(e).
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One advantage of using depth images is that these room hypotheses can rep-
resent the 3-D geometry information, and each surface can be characterized
by a plane in the 3-D coordinate system. Similar to [3], we represent objects
as 3-D cuboids. We adopt the object hypothesis generation method in [3] by
testing each pair of regions in the orientation map to check whether they can
form convex edges. Fig. 2(f) shows four object hypotheses generated from the
orientation map. Since there are a big number of hypotheses, we resort to human-
environment interaction to select the best compatible scene configuration.

4 Human-Environment Interaction for Environment
Modeling

We analyze human poses and motion to extract physical constraints to model
the environment. While joint points of humans can be obtained by the SDK
of Kinect, we find that the generated skeletons are still not stable to describe
human poses for our environment modeling task because of mis-matching, scale
change, and erroneous joint estimation. Hence, we adopt human silhouettes to
extract human poses and motion information for indoor environment modeling.

4.1 Support Surface Estimation from Poses

Human poses are constrained by the environment. Humans have to be supported
by stable surfaces. Hence, we can estimate support surfaces from human silhou-
ettes. Having obtained the scene background image, we subtract it from each
frame of the depth video to obtain human silhouette [12]. We apply two erosion
and one dilation operations with a 3 × 3 template for each segmented human
silhouette to remove noises and obtain one connected region [12]. Fig. 2(g) shows
four segmented human silhouettes.

For each binary human silhouette image, we detect horizontal lines in the
silhouette image and compute the length of each horizontal line. If the length is
larger than a threshold L, we assume there is a support surface. In our experi-
ment, L is set as 10. Given a horizontal edge line extracted from the silhouette
image, suppose there are Nl pixels in the line and the 3-D coordinate of the ith
point is (X(ui, vi), Y (ui, vi), Z(ui, vi)), where 1 ≤ i ≤ Nl. We assume that the
support surface P is parallel to the floor plane, then the plane equation of the
support surface P can be written as X = c, where c is the parameter. We obtain
c by solving the following optimization problem:

min
c

Nl∑

i=1

‖X(ui, vi)− c‖22 (1)

Since there are some erroneous human silhouettes due to imperfect image seg-
mentation, which may produce false positive surfaces, we only consider surfaces
which are consistent in a sequence with at least NT frames. In our experiments,
NT is set to 50.
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Having estimated the support surfaces, we use them to generate constraints
for indoor environment modeling. There are two types of surfaces that can be es-
timated: floor surfaces and object surfaces. For example, if the person stands or
walks on the floor without occlusions, the estimated support surface should be the
floor plane; if the person sits on a chair, the estimated surface should be the top
surface of the chair cuboid.We differentiate different types of surfaces according to
the aspect ration of the the human silhouette. Assume Pd be the floor surface and
Pe be the eth object surfaces discovered from human-environment interaction.We
exploit human-object and human-room interaction for environment modeling, as
the constraints used in Eqs (8) and (9) in Section 5.

4.2 Object Discovery from Motion

Human motion also provides useful information for indoor environment model-
ing. For example, if human silhouettes are occluded by objects, we can localize
these objects from the occluded silhouettes. Hence, we analyze human motion
for object discovery.

We calculate the integral projections [16] of human binary silhouettes. For
the tth human silhouette It(u, v), we compute the horizontal integral projection
(HIPt) as follows:

HIPt(u) =
wid∑

v=1

It(u, v) (2)

Having calculated the HIPt for the tth human silhouette It(u, v), we detect
the lowest row position ulow

t where HIPt(ut) ≥ 1. The position ulow
t reflects

the lowest position of the tth human silhouette It(u, v). Now, we compute the
absolute difference Dt = |ut − ut+1| of ut and ut+1 for two sequential frames,
and determine the occlusion condition as follows:

1. If Dt < τ , there is no occlusion change in the tth and (t + 1)th frames. In
our experiments, τ is set to 10.

2. If Dt ≥ τ , there is an occlusion change in the tth and (t + 1)th frames.
Specifically, if ut < ut+1, the person is occluded by some objects in the
(t + 1)th frame and not occluded by the tth frame; otherwise, he/she is
occluded by some objects in the tth frame and not occluded by the (t+1)th
frame.

Having determined the image frames with occlusions, we detect an object surface
in the environment. Assume the object rests on the floor, we can estimate the top
surface of the object. This cue is used as a constraint in Eq. (9) in Section 5.

4.3 Human-Object and Human-Room Volumetric Reasoning

Humans must be compatible with objects and environment in terms of volume.
Similar to [3], we perform human-object and human-room volumetric reasoning.
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Fig. 3. An example to show how human-object and human-room volumetric reasoning
can remove the incompatible object and room hypotheses. (a) The human cuboid
obtained from human silhouette. (b) An incompatible object hypothesis that intersects
with the human cuboid. (c) An incompatible room hypothesis which doesn’t fully
contain the human cuboid.

After obtaining the 3-D coordinate for each pixel of a human silhouette, we
model the human as a 3-D cuboid. Ideally, the volumetric intersection between
any object and the human cuboid should be empty. And the human cuboid
should be fully contained in the free space defined by the walls of the room.
With these two constraints, we can remove objects and room hypotheses which
are incompatible with humans, as shown in Fig. 3.

5 Evaluating Environment Configurations

Given a depth video, we generate a set of room hypotheses {R1, R2, · · · , RN}, a
set of 3-D object cuboid hypotheses {O1, O2, · · · , OK}, Rn = {Fn

1 , F
n
2 , · · · , Fn

5 }
defines the five faces [4], corresponding to the ceiling, left wall, middle wall,
right wall, and floor of the nth room hypothesis, respectively. We also obtain
the human silhouette for each frame. Our objective now is to find the best en-
vironment configuration, under which the spatial layout, objects, and humans
are most compatible with each other. We find the best room hypothesis and ob-
ject configurations which are most compatible with humans in the environment
based on the following objective function:

min
Rn,Y

5∑

i=1

Ni∑

j=1

d(Qn
ij , F

n
i ) + α

5∑

i=1

S(Fn
i ,M)− β

K∑

k=1

YOk
(3)

s.t. C1(Ok, Ol) ≤ δ1, ∀k, l, and k �= l (4)

C2(Ok, F
n
i ) ≤ δ2, ∀k, i (5)

C3(Hs, Ok) ≤ δ3, ∀s, k (6)

C4(Hs, F
n
i ) ≤ δ4, ∀s, i (7)

C5(Pd, F
n
5 ) ≤ δ5, ∀d (8)

YOk
= 1, if C6(Pe, O

T
k ) ≤ δ6, ∀e, k (9)
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where Ni denotes the number of pixels in the ith plane and it is zero if the ith
face is missing in the the spatial layout of the room, d(Qn

ij , F
n
i ) is the distance

between the jth pixel and the ith plane of the nth room hypothesis, S(Fn
i ,M)

denotes the inconsistency between the ith plane of the nth room hypothesis and
the orientation map, α and β are two parameters to balance the scales of these
two terms, and they were empirically set to 1000 and 1000 in our experiments.
C1(Ok, Ol) denotes the volumetric intersection between the kth and the lth
objects, C1(Ok, Ol) must be small (ideally, 0) if they are both present in the scene
configuration. C2(Ok, F

n
i ) denotes the volume of Ok (or a part of Ok) which is

not contained by the plane Fn
i . Again, C2(Ok, F

n
i ) must be small as an object

should be contained by the room. We keep all the object hypotheses which don’t
violate volumetric constraints by maximizing β

∑K
k=1 YOk

. C3(Hs, Ok) denotes
the volumetric intersection between the human cuboid estimated from the sth
frame and the kth object hypothesis, C3(Hs, Ok) must be small if Ok is present.
C4(Hs, F

n
i ) denotes the volume of the human cuboid (or a part of the cuboid)

which is not contained by the plane Fn
i . Similarly, C4(Hs, F

n
i ) must be small

for a valid room hypothesis Rn. C5(Pd, F
n
5 ) denotes the distance between the

floor discovered from humans and the floor plane of the nth room hypothesis.
This distance must be small for a good room hypothesis. C6(Pe, O

T
k ) denotes

the distance between the eth object surface discovered from humans and the
top surface of the kth object hypothesis, and Ok should be present in the scene
configuration if C6(Pe, O

T
k ) is small enough. δ1, δ2, δ3, δ4, δ5 and δ6 are six

parameters and empirically set to 300, 1000, 300, 1000, 5, and 2, respectively.
We first obtain the 3-D coordinate for each pixel and obtain the plane equa-

tions of Fn
i . Then, the distance d(Q

n
ij , Fti) can be computed. On the other hand,

we penalize inconsistency between the orientation map and room surfaces. A
good room hypothesis’s floor and ceiling should be parallel to the YOZ plane of
the orientation map, left and right walls should be parallel to the XOZ plane of
the orientation map, and the middle wall should be parallel to the XOY plane
of the orientation map, respectively. We find our approach is insensitive to these
parameters because there is usually a big difference between instances which
obey these constraints and instances which violate these constraints. These pa-
rameters are not tuned on our test videos.

It is intractable to obtain a closed-form solution to the constrained optimiza-
tion problem in Eqs. (3)-(9). To address this, we resort to using a fast greedy
search method to obtain an approximate solution. Specifically, we first select
the top C room hypotheses Rtop = {R1, R2, · · · , RC} with the smallest objective
function values in the first two terms of Eq. (3). In our experiments, the pa-
rameter C is empirically set as 10. Then, we remove the false object hypotheses
according to the constraints in Eqs. (4) and (5), and keep the positive object hy-
potheses according to the constraint in Eq. (9), respectively. For the remaining
room and object hypotheses, we compute the number of frames which satisfy
the constraints in Eqs. (6-(8) over the whole video and select the one which
has the largest number of frames satisfying these constraints as the final room
hypothesis. For a depth video with 300 frames, our algorithm can find the best
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Table 1. Statistics of our dataset. NF: number of frames; RH: number of room hy-
potheses; OH: number of object hypotheses; NO: number of objects interacted with
humans in the room. Note that only the objects with human-object interactions in the
environments were considered in our experiments.

Dataset NF RH OH NO Dataset NF RH OH NO Dataset NF RH OH NO

Video 1 348 324 10 2 Video 2 423 324 10 2 Video 3 294 360 12 2

Video 4 331 360 66 2 Video 5 345 144 17 1 Video 6 344 144 17 1

Video 7 306 196 5 1 Video 8 264 324 32 1 Video 9 305 324 32 2

Video 10 344 252 19 2 Video 11 370 324 48 2 Video 12 511 324 16 2

Video 13 371 324 4 2 Video 14 277 252 28 1 Video 15 297 252 24 1

scene configuration in less than 3 minutes with unoptimized matlab code using
an Intel Core 2.80GHz CPU.

6 Experimental Results

6.1 Dataset

We collect a new dataset for our experiments. We cannot collect a large-scale
dataset because it is very hard to get permissions from many room owners. In
our study, we test on 15 depth videos with resolution of 320×240. These videos
are collected in 5 different rooms, and the camera is stationary. In each room,
we capture 2-6 video clips by changing the viewpoint of the depth camera. In
each video, there is one person moving (e.g., standing, sitting, walking) freely in
the room. We have two different persons for these 15 videos. Table 1 tabulates
some statistics of our dataset including the number of frames for each video,
the number of room hypotheses, the number of object hypotheses generated
in Section 2, and the number of objects. Some example frames are shown in
Fig. 2(a).

6.2 Results

To show the advantage of using human-environment interaction, we consider
two baselines: 1) Baseline 1: Environment modeling without human and object
information, and 2) Baseline 2: Environment modeling using objects but without
human information.

Qualitative Evaluation: Fig. 4 illustrates some qualitative results of Baseline
1, Baseline 2 and our approach of three rooms, which clearly shows the benefits
of human-environment interaction: our approach can better extract the spatial
layout of the rooms and model objects than the other two baselines.

Quantitative Evaluation: We also quantitatively evaluate the performance of
our approach in estimating the spatial layout. For each depth video, we manually
labeled the ground truth of the five planes (i.e., three walls, ceiling plane and
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Fig. 4. Qualitative results for our indoor environment modeling (best viewed in color).
From top to down are the 1st, 5th, and 10th videos in our dataset, respectively. Our
approach can better find the floors of the rooms (rows 1-2) and model objects in the
environments (rows 1-3) than the other two baselines.

Table 2. Spatial layout estimation error (%) of different methods

Dataset Video 1 Video 2 Video 3 Video 4 Video 5 Video 6 Video 7 Video 8

Baseline 1 37.14 37.14 29.93 36.06 39.39 39.01 38.18 34.27

Baseline 2 37.14 37.14 29.93 34.24 24.33 28.42 38.18 24.26

Our method 18.96 22.11 16.91 19.36 24.33 27.34 15.26 22.12

Dataset Video 9 Video 10 Video 11 Video 12 Video 13 Video 14 Video 15 Average

Baseline 1 36.32 31.21 37.30 22.42 31.38 29.66 29.57 33.93

Baseline 2 25.65 31.21 28.46 22.42 24.56 29.66 29.57 29.68

Our method 22.12 21.44 22.64 19.15 22.32 21.61 24.36 21.34

floor plane) in the scene background image. We use the pixel-based measure
introduced in [4] which counts the percentage of pixels on the room surfaces that
disagree with the ground truth. Table 2 records the quantitative results on all
these depth videos when different methods were applied. Our approach achieves
an average error rate of 21.34%, while the performance number of Baseline 1
and Baseline 2 are 33.94% and 29.68%, respectively. The methods in [4] and [3]
cannot be directly applied to our data because it is very hard for us to collect
enough data to learn a structural model for scene configuration evaluations.

7 Conclusion and Future Work

In this paper, we have demonstrated the promise of exploiting human-
environment interaction to model indoor environments. As a proof of concept
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research paper, our experiments are performed on short video clips. However,
we believe much better results will be observed if we have videos for days or
weeks, as more human-environment interaction information will be provided. In
the near future, we are interested in applying this technique in realistic scenarios,
such as hospital wards, nuring homes, etc.
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