
Real-Time Plane Segmentation and Obstacle

Detection of 3D Point Clouds for Indoor Scenes

Zhe Wang, Hong Liu, Yueliang Qian, and Tao Xu

Key Laboratory of Intelligent Information Processing &&
Beijing Key Laboratory of Mobile Computing and Pervasive Device
Institute of Computing Technology, Chinese Academy of Sciences

Beijing 100190, China
{wangzhe01,hliu,ylqian,xutao}@ict.ac.cn

Abstract. Scene analysis is an important issue in computer vision and
extracting structural information is one of the fundamental techniques.
Taking advantage of depth camera, we propose a novel fast plane segmen-
tation algorithm and use it to detect obstacles in indoor environment.
The proposed algorithm has two steps: the initial segmentation and the
refined segmentation. Firstly, depth image is converted into 3D point
cloud and divided into voxels, which are less sensitive to noises com-
pared with pixels. Then area-growing algorithm is used to extract the
candidate planes according to the normal of each voxel. Secondly, each
point that hasn’t been classified to any plane is examined whether it ac-
tually belongs to a plane. The two-step strategy has been proven to be a
fast segmentation method with high accuracy. The experimental results
demonstrate that our method can segment planes and detect obstacles
in real-time with high accuracy for indoor scenes.

Keywords: plane segmentation, point cloud, obstacle detection.

1 Introduction

Understanding the structural information of the surrounding environment is a
principal issue for indoor service robots and wearable obstacle avoidance devices.
There are many man-made planes in indoor scene. Plane detection and segmen-
tation is the fundamental technique for understanding the structure and can be
used in many important applications, such as robot navigation, object detection,
scene labeling and so on. The accuracy of plane segmentation is highly related
to the performance of the whole scene understanding system. Furthermore, as
the basic step of scene understanding systems, plane segmentation should be
processed in real-time.

Recently, depth cameras, such as the Microsoft Kinect, generate a booming
effect in the computer vision filed. Kinect acquires depth information at high
frame rates (30Hz) and the accuracy is roughly equal to 3D laser scanners in
low ranges. With depth data, the shape, size, geometric information and several
other properties of the objects can be more precisely determined. As a result,

A. Fusiello et al. (Eds.): ECCV 2012 Ws/Demos, Part II, LNCS 7584, pp. 22–31, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Real-Time Plane Segmentation and Obstacle Detection 23

depth cameras greatly stimulate researchers’ enthusiasm and have been widely
used in plenty of computer vision systems, such as mobile robot navigation[1],
3D reconstruction[2] and indoor navigation systems[3].

Based on single depth camera from one view, we focus on fast plane seg-
mentation method and use it to detect obstacles in indoor scenes. Depth image
grabbed by single depth camera has some noises. Furthermore, the resolution of
depth image by Kinect is 640× 480 pixels, which has excessive amount of data
for real-time processing.

In this paper we present an algorithm to accurately segment all planes using
depth image, and then detect the obstacles in indoor scenes. A novel two-step
strategy PVP for fast Plane segmentation mainly consists of Voxel-wise initial
segmentation and Pixel-wise accurate segmentation is proposed. Firstly, we con-
vert the depth image into 3D point cloud and divide the point cloud into voxels.
Then the normal of each voxel is calculated and an area-growing based algorithm
is used to extract the candidate planes according to the normal of each voxel.
Secondly, each point in point cloud that hasn’t been classified to any plane is
examined whether it actually belongs to a plane or not. Then the fragments of
the same plane are merged together. The experimental results show the proposed
two-step strategy PVP is a fast segmentation method with high accuracy.

2 Related Work

Many plane segmentation algorithms for 3D data have been proposed in recent
years. Some researchers treat depth images as 2D images and apply 2D segmen-
tation methods on depth images directly. The only difference is that the value
of each pixel in depth images is not in the range of 0 to 255. When adopting
advanced segmentation algorithms like mean-shift clustering[4] or graph-based
segmentation[5], this approach gives good results in some scenes. However, in
other situations such as the case of close or touching objects, these methods
perform badly. Some algorithms, like[6] or[7], use RANSAC or J-linkage[8] to
robustly estimate the parameters of all planes in a depth image. But this kind
of algorithms is usually slow and can hardly be adopted in real-time systems.
Furthermore, these methods are unsuitable for large and complex scenes such as
office rooms. So some researchers begin to find other more efficient methods. Holz
et al.[9] use integral images to compute local surface normals of point clouds.
Then the points are clustered, segmented, and classified in both normal space and
spherical coordinates. The experiments show the algorithm could achieve a frame
rate at 30Hz at the resolution of 160×120 pixels. However other advanced tasks
like object classification may need a higher resolution. Dube et al.[10] extract
planes from depth images based on the Randomized Hough Transformation.
They use a noise model for the sensor to solve the task of finding proper param-
eter metrics for the Randomized Hough Transform. This algorithm is real-time
capable on the platform of a mobile robot. However it can only detect planes,
and cannot accurately segments the planes.

24 Z. Wang et al.

Fig. 1. System architecture

3 Overview of Our Approach

Fig. 1 gives the architecture of our system. Basically, our system contains three
stages: data preprocessing, plane segmentation and obstacle detection. First of
all, in the data preprocessing stage, the depth image obtained from the Kinect
is converted to the corresponding 3D point cloud. Then a voxel grid is created
on the point cloud. For each voxel, a plane equation is estimated using least
square estimation technique and the normal of the plane can be obtained from
the coefficient of the equation. Next, in the plane segmentation stage, an area-
growing based algorithm is firstly adopted to extract candidate planes at the
initial segmentation step. Then the remaining points are examined one by one
to achieve accurate segmentation. For each point, we search in the 3D space
within a certain radius to determine whether it belongs to a plane or not. Plane
fragments are merged together at the last step of plane segmentation. In the
obstacle detection stage, all the planes are removed from the point cloud. Then
we use an area-growing based algorithm to extract point clusters and each point
cluster is considered to be an obstacle.

Real-Time Plane Segmentation and Obstacle Detection 25

4 Real-Time Plane Segmentation Algorithm PVP

3D point cloud contains much structural information that can be used for plane
segmentation. However, the point cloud obtained from the Kinect has a large
amount of data. So algorithms for point cloud are often time consuming. In
this paper, we propose a novel two-step plane segmentation algorithm PVP that
firstly applies a voxel-wise initial segmentation and then a pixel-wise refinement.
The voxel-wise segmentation gives a rough but extremely fast result and then
the pixel-wise refinement greatly enhance the accuracy. The combination of the
two steps is a great balance between speed and accuracy.

4.1 Initial Plane Segmentation

Normally, plane segmentation algorithms would check each pixel of the image to
determine whether this pixel can be classified to a certain plane. However, we find
that in 3D point cloud, planes always consist of many flat pieces of points. These
pieces have the same normal and are next to each other. Inspired by this idea,
we construct voxel grid on the point cloud and let each voxel be the smallest unit
to do initial plane segmentation. A voxel is a small 3D box containing several
points as Fig. 2 shows. The side-length of the voxel used in our experiments is
20 cm. For each voxel, we use the least square estimation technique to estimate
a plane equation that fits all the points in the voxel. Assume that the plane
equation is Ax +By + Cz + 1 = 0, the least square estimation for A,B,C is

⎡
⎣
A
B
C

⎤
⎦ =

⎡
⎣

∑
x2
i

∑
xiyi

∑
xizi∑

xiyi
∑

y2i
∑

yizi∑
xizi

∑
yizi

∑
z2i

⎤
⎦
−1 ⎡

⎣
∑

xi∑
yi∑
zi

⎤
⎦ (1)

where (xi, yi, zi), i = 1, 2, 3, ..., N represents a point in the voxel. It is an obvious
result in analytic geometry that vector [A B C]T is exactly the normal of this
plane. After calculating the plane equations for all the voxels, we use the normals
to extract initial planes.

Plane segmentation can be treated as a clustering problem. However, if we
directly cluster points in the 3D point cloud, the efficiency of the algorithm
would not meet the demand of a real-time system. We notice that planes in
point cloud consist of small flat pieces, and the pieces of the same plane have
the same normal direction. After constructing voxel grid on 3D point cloud,
each voxel actually is a piece of points. If the adjacent voxels have the same
normal direction, they can be considered in the same plane. So we obtain all the
clusters of voxels and in each cluster the normal direction of the voxels are the
same. Finally if a voxel cluster is larger than a threshold, it is determined to
be a plane. The detailed algorithm is described in Algorithm 1. The number of
adjacent voxels is a parameter whose value is 26 in our experiments.

After these steps, we can get many voxel clusters. The cluster contains more
than a certain number of voxels is considered as a candidate plane. The voxels

26 Z. Wang et al.

Fig. 2. Construct voxel grid on 3D point cloud

belong to a plane are called planar-voxel, and the remaining voxels are called non-
planar-voxel. Points in all the non-planar-voxels should be accurately examined
pixel by pixel in the refined segmentation. Furthermore, the voxel-wise plane
segmentation is less sensitive to noise because several noise points would not
influence the normal of a voxel.

4.2 Refined Plane Segmentation

After initial plane segmentation, we get several roughly segmented candidate
plans. In order to obtain an accurate segmentation result, we check each point
in the non-planar point cloud to determine whether it belongs to a certain existed
plane. We know that if a point is on a plane, then the distance from the point to
that plane is near zero. For each point, the distance between it and a candidate
plane is calculated. If the distance is small, the point is considered belongs to that
plane. However, comparing with every candidate plane is too global, neglecting
the local structural restrictions. So we search the neighborhood of a point for
candidate planes. And if there are planes near this point, then we just calculate
the distance between the point and these neighbor planes to determine which
plane the point belongs to.

More specifically, we traverse the voxels grid and find the voxels that haven’t
been clustered to a plane. Then we take one of these voxels as the center and
search the space surrounding the center with radius r. In order to speed up the
algorithm, we just search in a cube of side r cm and r is an integral multiple of
the length of the voxel’s side. If there are no planar-voxels near the center, then
all the points in the central voxel are considered as non-planar points. Otherwise,
if there are planar-voxels near the center, then for each point in the central voxel,

Real-Time Plane Segmentation and Obstacle Detection 27

Algorithm 1. Initial Plane Segmentation

1: Traverse the voxel grid and find a voxel V0 that hasn’t been processed before.
Calculate the average distance d of the points in V0 to the estimated plane of V0.
If d is smaller than a threshold then create a queue Q and add V0 to Q. Otherwise,
find another V0;

2: Examine each of the 26 adjacent voxels Vi(i = 1, 2, ..., 26) surrounding V0. If Vi

hasn’t been processed, then go on with the calculation. Let ni = (xi, yi, zi) denote
the normal of Vi and n0 = (x0, y0, z0) denote the normal of Vi. Calculate the cosine
of the angle of ni and n0 :

cos θ =
xi · x0 + yi · y0 + zi · z0

|ni| · |n0| (2)

If | cos θ| is larger than a threshold, record Vi and V0 belongs to the same plane
and then insert Vi into Q;

3: Pick up an element from Q and regard it as V0. Then return to step 2;
4: If Q is empty, return to step 1;
5: Repeat step 1 to step 4 until all the voxels are examined;

we calculate the distances between the point and every neighbor planar-voxel.
The plane equation of each voxel has been calculated when we create the voxel
grid, so we can directly use the result to calculate the distance. Let p denotes
the coordinate of one point in the central voxel, Vij denotes the ith planar-voxel
in the neighborhood that belongs to plane Pj and the plane equation of Vij is
Ax+By + Cz + 1 = 0. Then the distance from p to Vij is:

dij =
|Ax′

+By
′
+ Cz

′
+ 1|√

A2 +B2 + C2
(3)

For each planar-voxel we recorded, the distance is calculated. Then we choose
d = min dij . If d is smaller than a threshold, then point p is considered a point
in the corresponding plane Pj . Otherwise point p is a not a point in a plane.
All the points in the central voxel are determined like this. After applying this
process for all the non-planar-voxels, we can get a refined plane segmentation
result.

After the fine segmentation, all the planes are segmented. However, some
planes may be divided into several parts. So the planes actually belong to one
big plane should be merged together. For each segmented plane, we estimate the
plane normal based all the points that belong to the plane. If the angle of two
normal directions of two planes is smaller than a threshold and the two planes
are adjacent with each other, then they are merged as one plane and the new
plane would replace these two planes. Repeat these steps until no plane can be
merged with another. Fig. 3 presents an example of the result after accurate
segmentation and plane merge.

28 Z. Wang et al.

(a) (b) (c) (d)

Fig. 3. An example of plane segmentation. (a) is the original point cloud. (b) shows
the result of initial segmentation. Gray points represent the points that haven’t been
divided to a plane. And points are painted with color if they belong to a plane. (c) is
the result of accurate segmentation. (d) is the result after plane merging.

5 Obstacle Detection

Plane segmentation is a fundamental technic and can be used in obstacle detec-
tion, scene segmentation, environment understanding and so on. We apply our
plane segmentation algorithm PVP in an indoor obstacle detection system and it
performs very well. The idea of our obstacle detection algorithm is that ground
and walls are planes in indoor environment. Obstacles often lie on the ground or
beside the walls. If the ground and walls can be removed, the remaining objects
are all obstacles.

Following this idea, we propose an algorithm to detect obstacles in the point
cloud. At first, all the planes are extracted using our plane segmentation algo-
rithm PVP. Then we set a threshold to filter out large planes because they may
be ground or walls in the scene, while the small planes could be the surfaces
of desks or boxes. Next, the large planes are removed from the point cloud, so
the remaining points are potential obstacles. To segment all the obstacles, we
adopt an area-growing based algorithm. We do not directly cluster the points in
the point cloud because it’s too slow. Here we use the same idea as the initial
segmentation of our plane segmentation algorithm. A voxel grid is created at
first, and then we use the area-growing method to extract every voxel cluster.
In area-growing, voxels are clustered if they are adjacent and both contain more
than a certain number of points. The area-growing algorithm used for obstacle
detection is different with that of the plane segmentation as the growing strat-
egy is different. This technique can correctly handle weakly connected obstacles,
preventing them to be clustered together. After area-growing, we can get several
voxel clusters. All the points in voxels of the same cluster form an obstacle.

The method is simple and fast, which makes it very suitable for indoor nav-
igation system or guiding system. Furthermore, as we detect obstacles in 3D
environment, the size, direction and distance of each obstacle can be easily cal-
culated. The above information can be used for automatic navigation of indoor
robots or wearable guidance devices.

Real-Time Plane Segmentation and Obstacle Detection 29

Fig. 4. Plane segmentation and obstacle detection results of three scenes. The first row
is a sample of the corridor. The second is the classroom and the third is the office room.
In each row, the first column is the original point cloud generated from depth images.
The second column is the result of plane segmentation. Different planes are painted
with different colors. The third column is the result of obstacle detection. Different
obstacles are painted with different colors.

6 Experimental Results

We test the proposed algorithm on the dataset from[11]. The dataset is acquired
from a Kinect mounted on a remotely controlled robot. The results have been
measured over 30 depth images taken in 3 different scenes: classroom, office room
and corridor. Each scene contains 10 images and totally 30 images. Firstly we use
our algorithm to segment large planes like ground and walls. Then use the result
to detect obstacles in the scene. Fig. 4 shows the results of plane segmentation
and obstacle detection of each scene.

Our system is deployed on an Intel Core i7 2.0 GHz CPU laptop computer.
The algorithms run sequentially on a single thread within a single core. As the
detection rates would not be affected by the input image and the CPU we used is
the bottom model of i7 series, which means our CPU would be no powerful than
the CPU used in[9], we just take the result from[9] to make a comparison. The
results are recorded in Table 1. Clearly our method achieves real-time processing
at VGA resolution while Holz’s method only runs at 7Hz under this resolution.
When the image resolution reduced, our method also performs much better
than Holz’s method. Data shows that our algorithm is truly capable of real-time
processing. And if we take advantage of multi-thread technique on multi-core
CPU, the frame rate would be improved significantly.

A subjective evaluation is also conducted to quantitatively analyze the pro-
posed algorithm. For each depth image, we label all the planes and obstacles in
the image and then manually analyze the performance of our system according

30 Z. Wang et al.

to the ground truth labels. In order to quantitatively measure the accuracy of
our system, we calculate two commonly used benchmark recall and precision in
our dataset. The results are presented in Table 2. The performance is related
to the complexity of the scene. In complex scenes, there are less planar areas so
that the plane segmentation results are bad and thus influence the performance
of obstacle detection. It is clear that the scenes of the classroom and the corri-
dor are simple and the scenes of the office room are complex. So it is natural
that both the recall and precision are high in classroom and corridor. And for a
more complex environment, like office room in our experiment, the performance
is degraded.

Table 1. Frame rate of different resolution. The processing time of our method is
measured and compared with Holz’s method.

Image resolution Holz’s method Our method

VGA(640× 480 pixels) 7Hz 25Hz

QVGA(320× 240 pixels) 27Hz 67Hz

QQVGA(160× 120 pixels) 30Hz 130Hz

Table 2. Recall and precision of the system. For each scene, the recall and precision
is calculated. And then the total results are given.

Scene
Plane segmentation Obstacle detection

recall precision recall precision

Classroom 100% 100% 100% 85%

Office room 90.91% 96.30% 97.83% 91.30%

Corridor 100% 100% 100% 92%

Total 97.18% 98.70% 98.94% 89.19%

7 Conclusion

In this paper, we propose a two-step plane segmentation method which is ca-
pable of real-time segmenting VGA resolution depth images. The depth image
is converted into 3D point cloud and a voxel grid is created on it. Then we ap-
ply the voxel-wise initial segmentation on the voxel grid. Next, the pixel-wise
accurate segmentation is used to refine the result. After plane segmentation,
we use the result to implement obstacle detection in indoor environment. We
implement the system on a laptop computer and conduct several experiments
to evaluate the algorithms. The frame rate is measured and compared with an-
other algorithm and the accuracy is quantitatively analyzed. The experimental
result shows our method is fast and accurate. Thus, our system proves to be
very suitable for indoor robots navigation or object avoidance systems, which

Real-Time Plane Segmentation and Obstacle Detection 31

require high efficiency. As an extension of this work, we are going to combine
gray or color information acquired simultaneously from the Kinect to recognize
detected objects.

Acknowledgments. The research work is supported by the National Nature
Science Foundation of China No.60802067 and the Nature Science Foundation
of Ningbo No.2012A610046.

References

1. Benavidez, P., Jamshidi, M.: Mobile robot navigation and target tracking system.
In: International Conference on System of Systems Engineering (SoSE), pp. 299–
304 (June 2011)

2. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton,
J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A.: Kinectfusion: real-time
3d reconstruction and interaction using a moving depth camera. In: Proceedings
of the 24th Annual ACM Symposium on User Interface Software and Technology,
pp. 559–568 (2011)

3. Mann, S., Huang, J., Janzen, R., Lo, R., Rampersad, V., Chen, A., Doha, T.: Blind
navigation with a wearable range camera and vibrotactile helmet. In: Proceedings
of the 19th ACM International Conference on Multimedia, pp. 1325–1328 (2011)

4. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space anal-
ysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 603–619
(May 2002)

5. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
International Journal of Computer Vision, 167–181 (September 2004)

6. Zuliani, M., Kenney, C.S., Manjunath, B.S.: The multiransac algorithm and its
application to detect planar homographies. In: International Conference on Image
Processing, pp. 153–156 (2005)

7. Schwarz, L.A., Mateus, D., Lallemand, J., Navab, N.: Tracking planes with time of
flight cameras and j-linkage. In: 2011 IEEE Workshop on Applications of Computer
Vision (WACV), pp. 664–671 (2011)

8. Toldo, R., Fusiello, A.: Robust Multiple Structures Estimation with J-Linkage. In:
Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302,
pp. 537–547. Springer, Heidelberg (2008)

9. Holz, D., Holzer, S., Rusu, R.B., Behnke, S.: Real-time plane segmentation using
rgb-d cameras. In: RoboCup Symposium (2011)

10. Dub, D., Zell, A.: Real-time plane extraction from depth images with the ran-
domized hough transform. In: IEEE International Conference on Computer Vision
Workshops (ICCV Workshops), pp. 1084–1091 (2011)

11. Wolf, C., Mille, J., Lombardi, L., Celiktutan, O., Jiu, M., Baccouche, M., Dellandra,
E., Bichot, C.E., Garcia, C., Sankur, B.: The liris human activities dataset and the
icpr human activities recognition and localization competition. Technical report,
LIRIS Laboratory (March 28, 2012)

	Real-Time Plane Segmentation and Obstacle Detection of 3D Point Clouds for Indoor Scenes
	Introduction
	Related Work
	Overview of Our Approach
	Real-Time Plane Segmentation Algorithm PVP
	Initial Plane Segmentation
	Refined Plane Segmentation

	Obstacle Detection
	Experimental Results
	Conclusion
	References

