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Abstract. A versatile multi-image segmentation framework for 2D/3D
or multi-modal segmentation is introduced in this paper with possible
application in a wide range of machine vision problems. The framework
performs a joint segmentation and super-resolution to account for images
of unequal resolutions gained from different imaging sensors. This allows
to combine high resolution details of one modality with the distinctive-
ness of another modality. A set of measures is introduced to weight mea-
surements according to their expected reliability and it is utilized in the
segmentation as well as the super-resolution. The approach is demon-
strated with different experimental setups and the effect of additional
modalities as well as of the parameters of the framework are shown.

Keywords: Segmentation, Image Processing, Range Imaging, Time-of-
Flight (ToF), Photonic Mixer Device (PMD).

1 Introduction

Segmentation is a well known and widely studied topic in the area of image pro-
cessing, computer and machine vision with many applications in associated sub-
jects. The main sources of information are color images and several approaches
have been proposed like pixel based methods, edge oriented methods, region and
texture based approaches. Another research topic is how to apply these methods
to other information sources, e.g. radar data, MRI scans or depth measurements.

The capability of a single modality to distinct objects is for some applications
not sufficient or robust enough. The obvious approach is to utilize an additional
modality acquired with another imaging sensor. But the measurements of the
imaging sensors need to be registered, which is often non-trivial and sometimes
needs certain assumptions. Additionally, one cannot assume that the resolu-
tions of the imaging devices match. In the case that the lowest resolution is
not sufficient for the task at hand a super-resolution method is required, since
normal scaling methods are often not appropriate. In this paper we introduce
a segmentation and joint super-resolution framework, which utilizes a standard
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segmentation method (Mean-Shift) and estimates super-resolved input images
in an iterative process. The proposed method incorporates validity measures to
judge the measurement quality of input data in order to account for noise and
disturbances. The method is widely applicable and we demonstrate its capabili-
ties in given test setups.

This paper is structured as follows: In section 2 the related work is discussed
and in section 3 modalities used in the experiments and their acquisition are
detailed. Afterwards, the segmentation and super-resolution framework is in-
troduced in section 4. In section 5 experimental results of this framework are
reviewed and this paper ends with a conclusion in section 6.

2 Related Work

In this section research dealing with multi-image and depth image segmenta-
tion will be reviewed. In [1] the Mean-Shift algorithm is applied to color and
depth images acquired with two cameras (binocular setup). The depth images
are firstly resized with a bilateral filter and then segmented. Different super-
resolution methods for depth imaging including several variants of bilateral
filtering are compared in [2]. Color and depth are used for the task of alpha
matting in [3]. Furthermore, several approaches have been studied for plain back-
ground subtraction, e.g. in [4] an approach utilizing Gaussian Mixture Models is
demonstrated.

The segmentation of depth maps is performed in [5] for compression purposes
and in [6] intensity and depth information of the same size is segmented with
the graph-cut method and aimed at the detection of planar surfaces. In [7] a
watershed based segmentation is utilized to analyze biological samples with 2D
or 3D data and it combines intensity, edge and shape information. Lastly, the
segmentation of ultrasound images in 2D or 3D in studied in [8].

3 Multi-modal Sensor Data

In the area of machine vision standard color or grayscale images are the pre-
dominant source of information, but nevertheless, supplemental modalities play
a growing role. In addition to a color chip we utilize in this paper a continuous
wave (CW) Time-of-Flight imaging chip in which is able to provide depth and
near infrared reflectivity measurements. But the lateral resolution of such imag-
ing chips is significantly lower than those of standard color or grayscale chips and
also to low to capture fine details which are searched for in many applications.
On the other hand these additional modalities may be able to provide valuable
clues depending on the application.

The measurements often do not provide the information we want to utilize
in the segmentation directly. For color chips shadows or varying lighting is not
what we want to distinguish. Usually, the same is true for depth measurements.
Even planes parallel to the imaging plane do not have similar depth values.
Therefore, the first step is to derive the information of the images to be used in
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MultiCam characteristics

Interface Gigabit Ethernet

Lens adapter C-mount

Frame rate 12 fps (up to 80 fps with
reduced 2D resolution)

Color chip Aptina MT9T031

- Resolution 2048x1536

- Chip size 6.55mm x 4.92mm

PMD chip PMDTec 19k

- Resolution 160x120

- Chip size 7.2mm x 5.4mm

Fig. 1. The MultiCam, a 2D/3D monocular camera and its specifications

the segmentation. Color images are often transformed to L*u*v* color space to
make differences perceptually uniform and to be able to eliminate the influence of
lighting conditions. Concerning depth images we can derive normal vectors of the
depth image and use them in the segmentation if we have mostly planar objects
in the scene. In the following these transformed information will be referred to
as features.

We estimate normal vectors by firstly calculating 3D points of the depth values
using a range camera model. Afterwards, the surface normal n = (nx, ny, nz) at
each 3D point p = (px, py, pz) can be estimated by averaging over the 8 normal
vectors of triangles spanned by p and combinations of its neighbor points. This
will lead to interpolation errors at the borders of objects and may need additional
handling.

The measurements performed have usually varying reliability. In some cases
it is useful to utilize validity measures to judge the usefulness of a measurement.
The quality of lighting greatly influences color information and it can be esti-
mated based on the Luminance. For CW ToF imaging the modulation amplitude
is a measure describing the amount of active lighting at given point and serves as
a valuable descriptor. The variance over time is for all measurements a reliable
validity measure as long as it is available, see section 4.2 for more details.

Additionally, we need to register the different images or multi-modal infor-
mation. With our monocular camera shown in figure 1 this simply consists in
applying a scale factor and an offset. When using multiple cameras this is more
complicated in general, but for some machine vision applications an affine trans-
formation may suffice.

4 Multi-image Segmentation Framework

Many traditional segmentation methods perform a clustering of points in the
so-called feature space consisting of coordinates and measurements. The main
advantage is that these methods are typically fast. On the down side these meth-
ods require input images of the same size. In section 4.1 a well known feature
space segmentation method, the Mean-Shift algorithm, is detailed.
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Furthermore, a given segmentation can be utilized to generate high resolution
images of the input images of lower resolution. In section 4.3 such a super-
resolution method is discussed. This leads to an estimation problem, which can
be formulated in the Expectation Maximization (EM) framework as follows: all
labels of feature points make up the parameter set Ω and the missing measure-
ments due to lower resolutions are unobserved latent variables Z. This is based
on the assumption that the segmentation algorithm maximizes the likelihood
given Z.

1. Initialization: Generate uniform segmentation Ω(0).
2. Estimation: Perform a super-resolution to estimate Z.
3. Maximization: Perform a multi-image segmentation to retrieve Ω(t+1).

The E- and M-steps are iterated until a convergence is reached or a maximum
number of iterations were performed. In the following sections the segmentation
and super-resolution methods are detailed.

4.1 Mean-Shift Segmentation

The Mean-Shift algorithm [9] is a feature space approach and consists of two
steps. In the first one (filtering) the mean-shift vectors are calculated iteratively
and the feature points are moved accordingly until a convergence is reached.
These vectors are determined by calculating the weighted average of neighboring
feature points. In the second step the filtered feature points are merged to form
regions or segments.
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The first term is based on the squared Euclidean distance between the two
points and the second uses a (pseudo-)norm to measure differences between
features. hspace and hrange are bandwidth parameters to control the influence of
the kernels.
Given a point P
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where the set N(·) denotes a spatial neighborhood. The Mean-Shift vector is

the difference P
(t+1)
i − P

(t)
i and for each point these iterative calculations are
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Fig. 2. Different modalities (colorization) acquired with the MultiCam

performed independently. Once the Mean-Shift filtering is finished, the feature
points are merged using a distance threshold in the spatial domain as well as in
the range domain.

4.2 Weighted Multi-modal Mean-Shift

The update formula of the Mean-Shift section can be easily extended with ad-
ditional weights ω(P ) leading to

P
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The weights are specific to a feature Point P and not separate for subspaces
of the feature space, since we perform a joint segmentation over all modalities.
In figure 2 different modalities acquired with the MultiCam are shown. Let
P =

(
p, f

)
be a feature point and f = (fL, fu, fv, fd, fmod, nx, ny, nz, fσ) ∈ Φ

with a color value (fL, fu, fv) in the L*u*v* color space, a depth value fd, a
modulation amplitude fmod, a normal vector n = (nx, ny, nz) and a variance
fσ of the depth measurements. We can the define validity measures as follows.
γlum(P ) gives penalties for low and high luminance levels with an appropriate
parameter, e.g. αlum = 70, and a bandwidth hlum = 2

γlum(P ) = exp

{
− (fL − αlum)2

hlum

}
. (4)

Similarly, the modulation amplitude of CW ToF imaging describes reliably the
noise level of the depth measurements and its influence in the validity measure

γmod(P ) = 1 − exp
{
− f2

mod

hmod

}
is controlled with a bandwidth parameter hmod.

Another indicator of the quality of the depth measurement is the variance over

time, which is exploited in γvar(P ) = exp
{
− f2

σ

hσ

}
. The complete additional

weight is given by ω(P ) = γlum(P ) · γmod(P ) · γvar(P ).
In the weight g (Pi, Pj) between two feature points each subspace is typically

treated independently, i.e. the range (pseudo)-norm ‖·‖r consists of separate
norms for each subspace. Euclidean norms are commonly used, but this is not
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appropriate for some modalities, especially for comparison of two normal vectors.
Here the squared sine of the enclosed angle is much more suitable. Nevertheless,
for simplicity it is also possible to use the distance measure δn

(
ni, nj

)
between

normal vectors ni and nj of unit length, which embeds a Euclidean distance in
a Gaussian kernel
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In the experiments we use the following weighting kernel to measure differences
between the feature points Pi = (p

i
, ci, di, ni) and Pj = (p

j
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lattices p·, color values c·, depth values d· and normal vectors n· with associated
bandwidths
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4.3 Joint Super-Resolution

A given segmentation can be used to estimate high resolution images of multi-
modal images of lower resolution. Super-resolution for multiple images is often
performed under the assumption that data of the different images coincides, e.g.
color and depth. In the area of depth imaging cross bilateral filtering working on
this assumption is commonly used. The same notion is true for segments found
in multi-modal data.

Let S1, S2, . . . , Sm ⊂ Ψ × Φ be segments with Si ∩ Sj = ∅ for i �= j with a
subspace Φ of Φ, for which a super-resolution should be performed. Let q(t) =

(p, f (t)) ∈ Si be a point at iteration t of the EM algorithm with arbitrary lattice

p and feature f (t). Let further g(·, ·) be a (Gaussian) kernel and N(·) a spatial

neighborhood. In the subsequent iteration q(t+1) is computed with

q(t+1) =

∑
u∈Si∩N(q(t)) u · ω (u) · g (q(t), u)
∑

u∈Si∩N(q(t)) ω (u) · g (q(t), u) . (7)

There are different possibilities to calculate this formula, e.g. the spatial neigh-
borhood can include only the direct measurements or every feature point on a
finer lattice and there are many ways to choose the kernel. In the experiments
with the MultiCam we firstly create feature points on the lattice of the color
image, since it has the highest resolution. To this end the other images are
transformed, which includes here only a nearest neighbor scaling and a trans-
lation. Then the formula is applied with a spatial kernel for each feature point
yielding a new set of points.
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5 Experimental Evaluation

In order to evaluate the proposed segmentation and super-resolution framework
we start with the well known high quality Middlebury benchmark dataset [10],
which consists of sets of color images taken from different views and associated
disparity maps. A view of one setup was chosen and is shown in figure 3, where
the disparity map was converted to a depth map and the normal vectors were
computed. The depth map was downsampled with a factor of 5 to simulate
measurements of different lateral resolutions. One exemplary segmentation is
shown and the super-resolution results are displayed also, which show weaknesses
for thin objects but work in general as expected. Furthermore, the iterative
estimates of the high resolution depth maps are shown in figure 4. One can
observe a very smooth initial estimate and a sharpening in following iterations.

In figure 5 a similar setup, in which a variety of mostly white objects are
arranged, is shown. The setup was acquired with the MultiCam and depth as
well as normal maps were calculated. It shall be noted that it is usually possible to

(a) Input image

D
ep

th
 [m

m
]

1400

1600

1800

2000

2200

(b) Depth (from disparity) (c) Normal vectors

(d) Segmentation
hdepth = hnormal = 2

D
ep

th
 [m

m
]

1400

1600

1800

2000

2200

(e) Low resolution depth (f) Low res. normal
vectors

(g) Color modes

D
ep

th
 [m

m
]

1400

1600

1800

2000

2200

(h) SR depth (i) SR normal vectors

Fig. 3. Multi-modal segmentation results for a benchmark image of the Middlebury
dataset and super-resolution images
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(a) Low res. depth map (b) Initial estimate (c) Third iteration

Fig. 4. Incremental estimation of the super-resolved depth map
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Fig. 5. Experimental setup with mostly white objects and segmentation results using
depth map and estimated normal vectors

find parameters for the Mean-Shift algorithm to perform a valuable segmentation
of such uniform scenes. Nevertheless, this segmentation is not robust and thus
not reliable. The normal vectors do not provide valuable segmentation hints
for this scene due to the parallel planes and curvatures. Segmentation results
based on color and depth for three different parameter settings are shown with
colored labels and average color of the segments. The depth bandwidth hdepth

was changed to demonstrate the influence of the depth measurements and its
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(a) Input image
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Fig. 6. Test scene acquired under difficult lighting conditions and a set of different
segmentations

significant value can be observed. In figure 6 a similar setup was acquired and
it is demonstrated that color information provides in this case only small hints
for the segmentation. The depth measurements can be utilized in conjunction
with normal vectors to perform the segmentation and the color information is
exploited mainly in the super-resolution task.

6 Conclusion

In this paper a modular multi-image segmentation framework for multi-modal
data is introduced. Since the acquisition of multi-modal data is usually performed
with different imaging chips, the segmentation approach needs to account for dif-
ferent resolutions and necessary transformations to align the different modalities.
The proposed framework uses an estimation approach to jointly perform a seg-
mentation and super-resolution, in which results of the segmentation influence
the super-resolution and vice versa. The generated high resolution images are not
only needed to accomplish the segmentation at borders of objects but can also



A Modular Framework for 2D/3D and Multi-modal Segmentation 21

be utilized in subsequent processing steps. A set of validity measures is defined
to give measurements of expected lower quality lower weights in the segmenta-
tion and super-resolution. The proposed multi-modal segmentation framework is
demonstrated by applying it to 2D/3D segmentation and different experimental
setups are utilized to evaluate the validity measures as well as the influence of
the parameters of the approach. This should give valuable hints in which area
of application the method can be applied successfully.
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