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Abstract. Many computer vision applications require computing structure and
feature correspondence across a large, unorganized image collection. This is a
computationally expensive process, because the graph of matching image pairs is
unknown in advance, and so methods for quickly and accurately predicting which
of the O(n2) pairs of images match are critical. Image comparison methods such
as bag-of-words models or global features are often used to predict similar pairs,
but can be very noisy. In this paper, we propose a new image matching method
that uses discriminative learning techniques—applied to training data gathered
automatically during the image matching process—to gradually compute a better
similarity measure for predicting whether two images in a given collection over-
lap. By using such a learned similarity measure, our algorithm can select image
pairs that are more likely to match for performing further feature matching and
geometric verification, improving the overall efficiency of the matching process.
Our approach processes a set of images in an iterative manner, alternately per-
forming pairwise feature matching and learning an improved similarity measure.
Our experiments show that our learned measures can significantly improve match
prediction over the standard tf-idf-weighted similarity and more recent unsuper-
vised techniques even with small amounts of training data, and can improve the
overall speed of the image matching process by more than a factor of two.

1 Introduction

A key problem in recent Web-scale vision systems is to take a large, unstructured
image collection (e.g., a large set of Internet photos) and discover its visual connec-
tivity structure, i.e., determine which images overlap which other images, in the form
of an image graph, and find feature correspondence between matching images. Finding
this structure often involves testing many pairs of images, by matching SIFT features
and performing geometric verification. For example, 3D reconstruction methods for
large-scale Internet photos—such as all photos of Rome—require finding feature cor-
respondence by matching many pairs of images [1, 2], and other applications, such as
summarizing photo collections [3] and unsupervised discovery of objects [4] require
similar connectivity information. The computational cost for such feature matching and
geometric verification can be quite high, especially if more than a small fraction of the
total O(n2) possible image pairs in a set of n images are matched. However, many
large image collections exhibit sparse visual connectivity—only a fraction of possible
image pairs overlap. The question is then: how can we compute a good approximation
of the image connectivity graph, as efficiently as possible? We present a method that
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Fig. 1. Training an SVM classifier with positive and negative image pairs. Although each
image pair (images with borders of the same color) shown above contain images with many
common visual words (shown as boxes with same colors each pair), some pairs are true matches
(top right), while others are false matches (bottom left). Accordingly, some visual words are more
discriminative (or confusing) than others. Our goal is to learn a weighting of different visual
words to better predict matching and non-matching image pairs. This weighting is shown here as
a max-margin separating hyperplane. The images shown above are from the Trafalgar dataset.

Fig. 2. Two example visual words with different discriminative power. The three images on
the left contain a common visual word (in green), which is highly weighted by our learned model.
In contrast, the three images on the right also share a common visual word (in red), but do not
match; this word is given low weight.

learns a good measure for comparing images during such an image matching process,
improving this measure as it discovers the structure of the image graph.

To avoid exhaustive feature matching on all O(n2) image pairs, recent work has
used fast, whole-image similarity measures, such as bag-of-words (BoW) [5, 1, 2, 4]
or GIST features [6], to predict a smaller set of candidate image pairs on which to per-
form detailed matching. BoW methods in particular, often used in image retrieval [7],
have had increasing success for this image matching problem. However, BoW simi-
larities are quite noisy, due to quantization error and imperfect feature detections. As a
result, when used to predict image pairs for matching, many cycles are wasted matching
features between non-overlapping images, making the matching process unnecessarily
time-consuming.
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In this paper, we explore a new, iterative approach that learns to predict which pairs
of images in an input dataset match, and which do not, using discriminative learning of
BoW models. Our method adapts over time in the process of discovering the structure
of the image graph; as it attempts to match pairs of input images, the results are used as
training data to learn a model specific for that dataset. Motivating our approach is the
observation that some visual words are inherently more reliable for measuring image
similarity than others, and that these good features seem to be specific to a given dataset
(e.g., images of Times Square). For example, some visual words might be more stable
across viewpoint and illumination, or less sensitive to quantization errors, than others
(Figure 2). This suggests that if each visual word is correctly weighted, then our ability
to predict whether two images match can improve. While there are many unsupervised
ways to define such weights—e.g., tf-idf weighting [5], burstiness [8], co-occurrence
measures [9]—we explore the use of supervised learning to find a good set of weights,
given example pairs of matching and non-matching image pairs from an image set.
Unlike prior heuristic approaches, our method is free to leverage whatever structure is
present in the data to learn to separate matching image pairs from non-matching pairs.

Given a collection of images (represented as BoW histograms) of a place, our method
starts with an unsupervised similarity measure (e.g., tf-idf) and automatically generates
training data by first finding a small number of image pairs with high similarity, then ap-
plying relatively expensive feature matching and verification steps on these pairs. This
results in both positive image pairs (successful matches) and negative pairs (unsuccess-
ful matches). We then use discriminative learning (e.g., SVMs), to learn a new similarity
measure on features derived from these example image pairs, by posing this as a linear
classification problem. Unlike many classification problems, these features are formed
from image pairs, rather than individual images, as illustrated in Figure 1. This process
iterates, alternating between proposing more images to match, and learning a better
similarity measure. We show that, even with very small amounts of training data, our
learned models consistently outperform recent unsupervised techniques. Moreover, the
overhead of learning is quite low; the linear SVMs we use are extremely efficient to
compute, even when using a vocabulary of 1M visual words.

Our contributions are two-fold. First, we propose a fast, simple method for using dis-
criminative learning to classify image pairs in large-scale matching problems, showing
significant improvement over state-of-the-art unsupervised methods; we also show that
a modified form of regularization, as well as drawing negative training examples from
unrelated datasets, can improve our learned models. Second, we propose a new iterative
image matching method, based on this learning approach, that can reduce the amount of
time needed to find matches in large image sets by a factor of more than two on average.

2 Related Work

Bag-of-Words Models and Image Retrieval. In BoW models, features such as SIFT
[10] are extracted from an input image, then vector-quantized according to a vocabulary
of visual words learned from a large set of features (ideally from a related dataset). An
image is then represented as a histogram over visual words. Often tf-idf weighting is ap-
plied to these histograms [5], inspired by techniques from text retrieval. The similarity
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of an image pair can then be computed as, say, the dot product or histogram intersection
of their weighted histograms. BoW models are often used in image retrieval, but are also
common in object classification problems [11], where they have been shown to work
well combined with discriminative methods. Our problem differs from traditional classi-
fication problems in that we seek to classify pairs of images of some scene as matching
or non-matching, rather than classifying images into categories. This fits our goal of
discovering the structure of a large input collection; such collections are often better
described as a graph of pairwise connections, rather than a set of discrete categories.
While our problem is related to image retrieval, it differs in that the database and query
images are one and the same, and we want to discover the structure of the database
from scratch—we aren’t matching to a database known in advance. However, we build
on methods of computing weights for visual words proposed in the retrieval literature.
Many such methods are, like tf-idf weighting, unsupervised; Jegou et al. downweight
confusing features by modeling burstiness in BoW models [8], while Chum et al. down-
weight highly correlated sets of visual words (“co-ocsets”) [9]; sparse methods have
also been applied to identifying informative features [12]. Although such unsupervised
weighting schemes improve retrieval performance, we find that supervised learning can
exploit structure in the data for our image matching problem much more effectively
(Figure 4). Other methods use a form of supervision, but in a more limited way. For
instance, Mikulik et al. create a very fine visual vocabulary and compute a probabilistic
model of correlations between similar words [13]; others use image geo-tags [14, 15] to
select important features. Probably most related to our work is that of Turcot and Lowe,
who also gauge feature importance by performing image matching [16]. However, their
approach requires matching every image to k other database images, then modifying
each database vector individually. In contrast, our discriminative learning approach can
generalize much more efficiently, learning a useful metric before touching much of
the database, which is key to our goal of quickly predicting matching images in large
collections. Supervised learning has also been applied to learn better features through
non-linear projection of feature descriptors [17]. We instead learn linear classifiers in
the high-dimensional BoW feature space.

Distance Metric Learning. Our problem can be considered as treating images as high-
dimensional feature vectors, and learning a distance metric between images [18–20].
We forumulate this as learning a classifier over pairs of images, predicting a binary vari-
able (matching/non-matching) for each pair. Although online similarity learning over
images has been considered before [21, 22], these formulate the learning problem using
triplets of training images; in our problem setting, however, matching or non-matching
image pairs are more readily available as training data, motivating our formulation.
While our automatic training data generation procedure is related to that of [4], we use
it in an iterative manner to achieve a different objective than learning topic models.

3 Our Approach

Given a set of images I of a location, our goal is to efficiently compute an image graph
on I with edges linking overlapping images, by performing detailed SIFT matching
and geometric verification on some set of image pairs (edges). Through this matching
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process, we can determine whether or not the pair overlaps (and which features corre-
spond), by thresholding on the number of geometrically consistent matches. For large
collections, we wish to check a small subset of the O(n2) possible edges, yielding an
approximate graph; hence, we want to intelligently select a subset of edges to match, so
as to quickly compute as complete a graph as possible. Our approach seeks an efficient
way to predict whether or not a given image pair will match, by learning over time how
to classify pairs of images as matching or non-matching. In this section, we formulate
this problem as a one of discriminative learning, and propose an iterative approach that
alternates between detailed images matching and learning a discriminative model using
the matching results.

3.1 Discriminative Learning of a Classifier for Image Pairs

Consider two images represented as tf-idf weighted, sparse, normalized BoW histograms
a and b, each with dimension n (with n equal to, say, 1 million). A typical similarity
measure sim(a, b) is the cosine similarity, i.e., the dot product sim(a, b) = aT b. A
more general way to define a similarity function is sim(a, b) = aTMb, where M is a
symmetric n × n matrix. When M is the identity matrix, this definition reduces to the
tf-idf-weighted similarity (since a and b are “pre-weighted” with their tf-idf weights).1

At the other extreme, one could learn a full matrix M ; however, this would be expensive
given the high dimensionality of the histograms. In our case, we restrict our method to
learning a diagonal matrixW , which results in a weighted dot product of the histograms:
sim(a, b) = aTWb =

∑
i wiaibi, where the wi’s are the diagonal entries of W . Note

that we do not enforce that the wi’s are non-negative, hence sim(a, b) not a true metric;
nonetheless, we can still use the output as a decision value for prediction. While forcing
M to be diagonal is somewhat limiting, our results suggest that this method still works
well in the high-dimensional space of BoW histograms.

Our goal, then, is to learn a weighting wi on different dimensions of the visual vo-
cabulary specific to a given dataset; for this, we use the tools of discriminative learning.
For a pair of images (a, b), we define a feature vector xa,b as the vector of pair-wise
products of corresponding dimensions of a and b: xa,b

i = aibi. Given these features,
sim(a, b) is simply the dot product of the weight vector w with the feature vector xa,b.2

Given this representation, there is a natural formulation of the learning problem as that
of learning a hyperplane—or equivalently a set of weights wi—that separate positive
(matching) pairs with negative (non-matching) pairs of images. For this problem, we
can automatically generate training data by checking if two images match using de-
tailed SIFT matching and geometric verification: pairs (a, b) that pass become positive
training examples xa,b with label y = 1; pairs (c, d) that do not match become negative
training examples xc,d with label y = −1. Figure 1 illustrates this formulation.

1 We found that such preweighting works better than raw histograms for our learning method.
2 Other features defined on an image pair could also be used; e.g., defining the features as the

element-wise min of the two vectors results in a weighted histogram intersection similarity, and
creating a feature vector from all n2 products of word pairs results in learning a full matrix M .
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Fig. 3. Correct predictions of non-matching pairs. Due to challenging differences in contrast,
illumination and viewpoints, these two image pairs both failed the SIFT matching and verification
process, despite exhibiting visual overlap (as well as common visual words, which are marked
with boxes of the same color). In contrast, our model is able to correctly highly rank these images,
as they happen to have very discriminative visual words (in red). Note that the common visual
words may not always imply exact correspondence (e.g., because of repeating patterns).

Fig. 4. Histograms of matching vs. non-matching testing pairs. From left to right: histograms
of tf-idf similarity, co-ocset similarity [9] and our output values (∼100K training pairs) respec-
tively, for matching and non-matching test pairs. Note the log scale on the y-axis. The test pairs
consist of randomly chosen unseen image pairs from the TateModern dataset.

We use L2-regularized L2-loss SVMs for learning, which in our problem optimize:

min
w

1

2
wTw + C

∑

(a,b)∈S

(max(0, 1− ya,bwTxa,b))2, (1)

where S is the set of training pairs (a, b). The output weight vector w defines a separat-
ing hyperplane, but we also interpret it as a similarity measure (a weighted dot product).

While we find that standard linear SVMs work well given sufficient training data, in
our setting we start out with no training data, as it is only generated once we start match-
ing images. Given small amounts of training data, standard SVMs can severely overfit the
data, performing worse than tf-idf weighting. We propose two extensions to address this
problem. First, if negative examples from other image collections are available, we find
that these can boost the performance when combined with current training data (though
positive examples don’t seem to help). Second, we utilize a modified regularization for
SVMs that uses the tf-idf weights as a prior. In particular, our modified approach reg-
ularizes the weight vector w to be close to a vector of all ones, w0 (representing tf-idf
weighting). To regularize, we substitute w in the regularization term in (1) with w−w0,
and solve this modified optimization problem. This smoothly transitions between the
original tf-idf weights and our learned weights, and softly enforces positiveness of the
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weights, which helps in preventing overfitting and showing significant improvementover
both approaches given limited amounts of training data (Section 4).

Compared to the feature selection method of Turcot and Lowe [16], we do not rely
on explicit correspondence found by SIFT, and instead allow the SVMs to choose the
weights as they see fit. Interestingly, although our training data is defined by the output
of feature matching, in some cases feature matching fails to identify truly matching im-
age pairs, that our learned model can correctly predict (Figure 3). Figure 4 demonstrates
the predictive power of our method, by comparing histograms of similarities for match-
ing and non-matching pairs generated by our approach and two unsupervised methods
(tf-idf and the co-ocset method [9]) on the TateModern dataset (Section 4). Our method
can significantly improve separability of matching and non-matching pairs.

3.2 Iterative Learning and Matching

In practice, given a new set of images, there is initially no training data to learn from.
However, given even a relatively small amount of training data, our algorithm can still
boost performance in predicting matching and non-matching image pairs. Thus, we can
bootstrap by matching a small subset of pairs, then learning a better similarity measure
from the outcome of matching. We start by using the vanilla tf-idf weighted image
similarities to rank, for each image, all other images. Then our method performs SIFT
matching and verification on a small number of highly-ranked image pairs, and trains a
linear SVM using the resulting training data. We use the resulting classifier weights to
recompute a similarity measure, to re-rank the candidate lists for all images. The system
then resumes the image matching process using the new rankings, and repeats.

Given a learned similarity measure, there are many ways to decide the order in which
to attempt to match image pairs. We considered two simple strategies: one is to match
all image pairs with similarity values above some threshold; the other is to go down
re-ranked candidate lists of each images “layer by layer”, matching each image to its
most similar candidate in turn. These two strategies have different impacts on the overall
system behaviour. In general, the threshold-based strategy generates a higher percentage
of true matching pairs out of all pairs tested, while the layer-based strategy “grows” the
image graph more uniformly. In our experiments, we adopt the layer-based strategy, as
it is less biased towards parts of the image set that are initially ranked as very similar.

4 Experiments

To evaluate our approach, we collected 5 image datasets from Flickr, each correspond-
ing to a popular landmark and consisting of several thousand images, as summarized
in Table 1. The sets were chosen so that each contains a diversity of views, rather than
a single dominant view that would be relatively easy to learn an appearance model
for. In addition, each dataset contains images that are not pertinent to the scene itself,
such as close-ups of people and photos of water. We created a vocabulary of 1M vi-
sual words [23] on SIFT features from a separate set of images of Rome, used for all 5
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datasets. We also tested our method on two standard image retrieval datasets, Oxford5K
and Paris [7, 24]; for each we learned specific vocabularies from the database images.
We used LIBLINEAR and SVM-LIGHT3 to learn our SVMs.

4.1 Performance of Discriminative Learning

First, there are a few key questions that we’d like to answer: How much training data do
we need to see an improvement, and how quickly does performance improve with more
training data? How much do our two proposed extensions help given limited data? In
the limit, given large amounts of training data, how good of a similarity function can
we learn for a given location? To answer these questions, we devised an experiment
testing how well our approach can separate matching and non-matching pairs in each
dataset, given different amounts and types of training data. A perfect similarity measure
will, for any given image in the dataset, rank all of the matching images in the rest of
the dataset above all of the non-matching ones. To measure this, we selected 50 images
for each dataset as “queries” and created ground truth by performing SIFT matching
and geometric consistency check between these images and all of the other images in
that set (for Oxford5K and Paris, however, the standard query images and ground truth
are used). We compare our performance with two unsupervised baseline methods: raw
tf-idf [5] and co-occurrence set (co-ocset) [9] similarities. We measure the quality of
the ranking of the rest of the dataset for each query by the average precision (AP), and
performance of each model is measured by its mean AP (mAP) over our test set (higher
is better).

We trained SVMs with 200, 1,000, and 2,000 randomly sampled image pairs (with
no test query images involved in the training), using equal numbers of positive and
negative pairs, and determining the regularization parameterC through cross-validation.
To gauge how well our method can perform in the limit, we also trained models with
a much larger training set (around 100K training pairs) for each dataset. We also test
the effect of our proposed two extensions: modified regularization and adding negative
training pairs from an unrelated image set; for the latter, we used the same set of about
1M negative examples from several other datasets.4

The results are shown in Table 1. For our 5 Flickr datasets, our models trained with
200 examples (with standard regularization) are slightly worse on average than tf-idf
similarity, probably due to overfitting to insufficient training data, but both extensions
of our approach prove effective in dealing with this issue, each exceeding our base-
lines on average. Unsupervised co-ocset similarity also shows improvement over tf-idf
similarity, but our models consistently outperform both; even our unmodified method
trained with 1,000 examples outperforms both baselines, and with 2,000 examples the
mAP improves even further. The performance of models trained with ∼100K exam-
ples jumps by a significant margin, illustrating the large potential improvement of our
discriminative learning approach over time. Note that 100K examples is still a small

3 http://www.csie.ntu.edu.tw/˜cjlin/liblinear/,
http://svmlight.joachims.org/

4 We only test adding such negative data for our 5 Flickr sets, as they share a common
vocabulary.

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://svmlight.joachims.org/
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Table 1. mAP performance of models trained with various training data sizes. The base-
lines are the mAP scores for rankings using tf-idf similarity and co-ocset similarity [9]. Columns
marked with 200, 1000, 2000, and ∼100K show the performance of models trained with cor-
responding number of examples. N+neg corresponds to models trained with the same set of N
examples combined with large amounts of negative examples from other datasets; N+mr denotes
models trained with the same set of N examples using our modified regularization.

Dataset #img tf-idf co-ocset 200 200+neg 200+mr 1000 1000+neg 1000+mr 2000 2000+neg 2000+mr ∼100K

Trafalgar 6981 0.558 0.563 0.620 0.629 0.653 0.689 0.703 0.698 0.719 0.733 0.725 0.794
LondonEye 7047 0.621 0.629 0.586 0.632 0.657 0.650 0.676 0.677 0.673 0.694 0.687 0.783
TateModern 4813 0.712 0.716 0.771 0.793 0.813 0.828 0.835 0.836 0.839 0.851 0.846 0.884
SanMarco 7792 0.577 0.601 0.518 0.535 0.618 0.606 0.633 0.636 0.637 0.658 0.658 0.766

TimesSquare 6426 0.491 0.492 0.410 0.446 0.503 0.474 0.535 0.511 0.498 0.563 0.518 0.617
Average 0.592 0.600 0.581 0.607 0.649 0.650 0.676 0.672 0.673 0.700 0.687 0.769

Oxford5K [7] 5062 0.592 0.608 0.303 - 0.615 0.354 - 0.626 0.397 - 0.629 0.655
Paris [24] 6412 0.635 0.636 0.505 - 0.652 0.620 - 0.668 0.632 - 0.676 0.695

Average 0.613 0.622 0.404 - 0.633 0.487 - 0.647 0.514 - 0.652 0.675

fraction of the total number of possible pairs in each set (e.g., the Trafalgar dataset,
with 6,981 images, has over 24M image pairs). Comparing our two extensions, we find
that the improvement by modified regularization is more significant when there is very
little training data (e.g. 200 examples), while adding unrelated negative examples gives
a larger improvement when more data is available (e.g. 2,000 examples). Because Ox-
ford5K and Paris each encompass several disparate landmarks, they require more train-
ing data, and hence modified regularization is essential for these two datasets. With
modified regularization, models trained with only 200 examples outperform the base-
lines. We also tested with much lower amounts of training data; we found that with as
few as 20 training examples, our method can consistently outperform both baselines in
all datasets.

The mAP score above is also used in image retrieval, though we emphasize that
we address a different problem in that we seek to discover the connectivity of an en-
tire image set. Our method focuses on learning similarity measures, and as such is
orthogonal to other popular methods for improving image retrieval, such as query ex-
pansion [25], Hamming embedding [26], or using better feature detectors than the DoG
detector. Hence, while our baseline is not as good as that achieved in [7] (e.g. 0.618 for
Oxford5K), our method could be combined with others to achieve even better perfor-
mance.

4.2 System Evaluation

While the experiment above illustrates that our learning framework can yield better
similarity measures, how well does our iterative matching system work in practice? The
training pairs we get while matching will be different from the random ones selected
above. Hence, we also evaluate the performance of our iterative matching system as
a whole by running it on the datasets described above. As a reminder, our algorithm
matches images in rounds, initially using tf-idf similarity to rank candidate pairs for
matching, but learning a better model over time. Learning initially takes place once
a certain number N of image pairs have been processed. We observe that the margin
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Fig. 5. Per-round match success rates for five datasets. The x-axis is the round number, and the
y-axis is the percentage of image pairs tested so far found to be true matches. Since we use tf-idf
similarity in the first round, the corresponding percentages are the same for that round.

of performance improvement decreases as the number of training instances (rounds)
increases, so at each round we match more image pairs than last round by a factor
of β before training. This increases overall efficiency, as learning and re-ranking take
time. In our experiments, we use β = 1.5 and N = 2000. We compare to a baseline
system that does not rerank image pairs, and simply processes each image’s most similar
candidates in the order computed by tf-idf similarity. This mimics current similarity-
based large scale image matching methods [1, 4]. We terminate when ≥40 candidates
are processed for each image. For this experiment, efficiency is the key metric—how
quickly can we find matches, and what percent of the image pairs we try turn out to
be true matches (meaning we didn’t waste effort matching them)? Hence, we evaluate
performance after each round of matching using the percentage of image pairs tested
so far that were found to be true matches. A higher match success rate indicates better
efficiency.

Match success rate over time for five datasets are shown in Figure 5; the other
datasets show a similar trend. Aside from the initial round (where we use tf-idf simi-
larity), our system significantly improves the match success rate. For instance, for the
Trafalgar dataset, after seven rounds of matching, our method has a success rate of over
40%, while the baseline method has a success rate of just over 10%. We also found the
mAP metric used in Section 4.1 also improves gradually over time.

We found that the overhead of training and re-ranking between rounds is much
less than the time spent on image matching. For the Oxford5K dataset, our measured
CPU time for matching was 2,621 minutes, while training and re-ranking took 17 and
118 minutes respectively (0.66% and 4.49% of image matching time). To obtain 7,000
matching image pairs, the tf-idf similarity-based image matching method checked over
90K image pairs (≥1525 CPU minutes) while our approach checked fewer than 31K
(<707 CPU minutes including training and re-ranking overhead), more than a factor of
two improvement in efficiency. We also observed similar speedups with other datasets.

5 Conclusions and Discussion

In conclusion, we have shown that even with small amounts of training data, our learned
SVM models can predict matching and non-matching image pairs significantly better
than tf-idf and co-ocset methods for large-scale image matching. Our image matching
algorithm iteratively learns a better model of image similarity using accumulated image
matching results, in turn improving the efficiency of the matching process.
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We find that in our datasets, there are often a small number of reliable, discrimi-
native, highly weighted features. We tried using training data from other datasets to
predict them, but found this didn’t work well; these “good” features seem specific to
each dataset. One limitation of our approach is that discriminative learning is biased
towards visual words that appear frequently, which could lead to good classification
for canonical images in a dataset, but worse results for rarer ones. This relates to a
trade-off between generality and specificity. The more specific the dataset, the easier to
learn a good similarity measure. On the other hand, recent work has proposed learning
per-image classifiers or similarity functions [27, 28]. It would be interesting to explore
what level of granularity of similarity measure (global, local, or something in between)
works best.
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