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Abstract. Feature extraction, coding and pooling, are important com-
ponents on many contemporary object recognition paradigms. In this
paper we explore novel pooling techniques that encode the second-order
statistics of local descriptors inside a region. To achieve this effect, we
introduce multiplicative second-order analogues of average and max-
pooling that together with appropriate non-linearities lead to state-of-
the-art performance on free-form region recognition, without any type of
feature coding. Instead of coding, we found that enriching local descrip-
tors with additional image information leads to large performance gains,
especially in conjunction with the proposed pooling methodology. We
show that second-order pooling over free-form regions produces results
superior to those of the winning systems in the Pascal VOC 2011 seman-
tic segmentation challenge, with models that are 20,000 times faster.
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1 Introduction

Object recognition and categorization are central problems in computer vision.
Many popular approaches to recognition can be seen as implementing a standard
processing pipeline: (1) dense local feature extraction, (2) feature coding, (3) spa-
tial pooling of coded local features to construct a feature vector descriptor, and
(4) presenting the resulting descriptor to a classifier. Bag of words [l 2], spatial
pyramids [3] and orientation histograms [4] can all be seen as instantiations of
steps (1)-(3) of this paradigm |3, l6].

The role of pooling is to produce a global description of an image region
— a single descriptor that summarizes the local features inside the region and
is amenable as input to a standard classifier. Most current pooling techniques
compute first-order statistics [5]. The two most common examples are average-
pooling and max-pooling [5], which compute, respectively, the average and the
maximum over individual dimensions of the coded features. These methods were
shown to perform well in practice when combined with appropriate coding meth-
ods. For example average-pooling is usually applied in conjunction with a hard
quantization step that projects each local feature into its nearest neighbor in a
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codebook, in standard bag-of-words methods [2]. Max-pooling is most popular
in conjunction with sparse coding techniques [7].

In this paper we introduce and explore pooling methods that employ second-
order information captured in the form of symmetric matrices. Much of the
literature on pooling and recognition has considered the problem in the setting
of image classification. Here we pursue the more challenging problem of joint
recognition and segmentation, also known as semantic segmentation. Our con-
tributions can be summarized as proposing the following:

1. Second-order feature pooling methods leveraging recent advances in com-
putational differential geometry [§]. In particular we take advantage of the
Riemannian structure of the space of symmetric positive definite matrices to
summarize sets of local features inside a free-form region, while preserving
information about their pairwise correlations. The proposed pooling proce-
dures perform well without any coding stage and in conjunction with linear
classifiers, allowing for great scalability in the number of features and in the
number of examples.

2. New methodologies to efficiently perform second-order pooling over a large
number of regions by caching pooling outputs on shared areas of multiple
overlapping free-form regions.

3. Local feature enrichment approaches to second-order pooling. We augment
standard local descriptors, such as SIFT [9], with both raw image information
and the relative location and scale of local features within the spatial support
of the region.

In the experimental section we establish that our proposed pooling procedure
in conjunction with linear classifiers greatly improves upon standard first-order
pooling approaches, in semantic segmentation experiments. Surprisingly, second-
order pooling used in tandem with linear classifiers outperforms first-order pool-
ing used in conjunction with non-linear kernel classifiers. In fact, an implemen-
tation of the methods described in this paper outperforms all previous methods
on the Pascal VOC 2011 semantic segmentation dataset |[L0] using a simple in-
ference procedure, and offers training and testing times that are orders of mag-
nitude smaller than the best performing methods. Our method also outperforms
other recognition architectures using a single descriptor on Caltech101 |11} (this
approach is not segmentation-based).

We believe that the techniques described in this paper are of wide interest
due to their efficiency, simplicity and performance, as evidenced on the PASCAL
VOC dataset, one the most challenging in visual recognition. The source code
implementing these techniques is publicly available on our websites.

1.1 Related Work

Many techniques for recognition based on local features exist. Some methods
search for a subset of local features that best matches object parts, either within
generative [12] or discriminative |13] frameworks. These techniques are very pow-
erful, but their computational complexity increases rapidly as the number of
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object parts increases. Other approaches use classifiers working directly on the
multiple local features, by defining appropriate non-linear set kernels |14]. Such
techniques however do not scale well with the number of training examples.

Currently, there is significant interest in methods that summarize the fea-
tures inside a region, by using a combination of feature encoding and pooling
techniques. These methods can scale well in the number of local features, and
by using linear classifiers, they also have a favorable scaling in the number of
training examples [15]. A good review can be found in [5]. While most pooling
techniques compute first-order statistics, as discussed in the previous section,
certain second-order statistics have also been proposed for recognition. For ex-
ample, covariance matrices of low-level cues have been used with boosting [16].
Our work pursues different types of second-order statistics, more related to those
used in first-order pooling. We also focus on features that are somewhat higher-
level (e.g. SIFT) and popular for object categorization, and use a different tan-
gent space projection. The Fisher encoding [17] also uses second-order statistics
for recognition, but differently, our method does not use codebooks and has no
unsupervised learning stage: raw local feature descriptors are pooled directly in
a process that considers each pooling region in isolation (the distribution of all
local descriptors is therefore not modeled).

Recently there has been renewed interest in recognition using segments [18, (19,
20], for the problem of semantic segmentation. However, little is known about
which features and pooling methods perform best on such free-form shapes.
Most papers [18, [20] propose a custom combination of bag-of-words and HOG
descriptors, features popularized in other domains — image classification and
sliding-window detection. At the moment, there is also no explicit comparison
at the level of feature extraction, as often authors focus on the final semantic
segmentation results, which depend on many other factors, such as the inference
procedures. In this paper, we aim to fill this gap to some extent.

2 Second-Order Pooling

We assume a collection of m local features D = (X, F,S), characterized by
descriptors X = (X1,...,Xm), X € R", extracted over square patches centered
at general image locations F = (fi,...,f,), f € R? with pixel width S =
(Siy.--y8m), s € N. Furthermore, we assume that a set of k image regions R =
(Ri,...,Ry) is provided (e.g. obtained using bottom-up segmentation), each
composed of a set of pixel coordinates. A local feature d; is inside a region R;
whenever f; € R;. Then Fr, = {flf € R;} and |Fg,| is the number of local
features inside R;.

We pool local features to form global region descriptors P = (py,...,Py),
p € Ry, using second-order analogues of the most common first-order pooling
operators. In particular, we focus on multiplicative second-order interactions
(e.g. outer products), together with either the average or the max operators. We
define second-order average-pooling (2AvgP) as the matrix:
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1
Gavg(Rj) = Z X; 'XZT’ (1)

PR, it(£, € Ry)

and second-order maz-pooling (2MaxP), where the max operation is performed
over corresponding elements in the matrices resulting from the outer products
of local descriptors, as the matrix:

Gz (Rj) = z’:(rf?eaﬁj) X; x;r (2)
We are interested in using classifiers that offer training time that is linear in the
number of training examples [15]. The path we will pursue is not to make such
classifiers more powerful by employing a kernel, but instead to pass the pooled
second-order statistics through non-linearities that make them amenable to be
compared using standard inner products.

Log-Euclidean Tangent Space Mapping. Linear classifiers such as support
vector machines (SVM) optimize the geometric (Euclidean) margin between a
separating hyperplane and sets of positive and negative examples. However Gy
leads to symmetric positive definite (SPD) matrices which have a natural geom-
etry: they form a Riemannian manifold, a non-Euclidean space [21]. Fortunately,
it is possible to map this type of data to an Euclidean tangent space while pre-
serving the intrinsic geometric relationships as defined on the manifold, under
strong theoretical guarantees. One operator that stands out as particularly ef-
ficient uses the recently proposed theory of Log-Euclidean metrics |8] to map
SPD matrices to the tangent space at I (identity matrix). See [22] for a more
technical presentation within computer vision.

We use this operator, which requires only one principal matrix logarithm
operation per region It;, in our case:

Gty (R)) = log (Gavg(R;)) , 3)

avg

We compute the logarithm using the very stabld] Schur-Parlett algorithm [23]
which involves between n3 and n* operations depending on the distribution
of eigenvalues of the input matrices |23]. We observed computation times of
less than 0.01 seconds per region in our experiments. We do not apply this
transformation with G4z, which is not SPD in general [24].

Power Normalization. Linear classifiers have been observed to match well
with non-sparse features. The power normalization, introduced by Perronnin et
al [17] reduces sparsity by increasing small feature values and it also saturates
high feature values. It consists of a simple rescaling of each individual feature
value p by sign(p)-|p|", with h between 0 and 1. We found h = 0.75 to work well
in practice and used that value throughout the experiments. This normalization
is applied after the tangent space mapping with Gga.g and directly with Gonaz-

! This is the default algorithm for matrix logarithm computation in MATLAB.
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We form the final global region descriptor vector p; by concatenating the ele-
ments of the upper triangle of G(R;) (since it is symmetric). The dimensionality

q of p; is therefore "22+ ™. In practice our global region descriptors obtained by
pooling raw local descriptors have in the order of 10.000 dimensions.

3 Local Feature Enrichment

Unlike with first-order pooling methods, we observed good performance by using
second-order pooling directly on raw local descriptors such as SIFT (e.g. with-
out any coding). This may be due to the fact that, with this type of pooling,
information between all interacting pairs of descriptor dimensions is preserved.

Instead of coding, we enrich the local descriptors with their relative coordi-
nates within regions, as well as with additional raw image information. Here lies
another of our contributions. Let the width of the bounding box of region R;
be denoted by wj, its height by h; and the coordinates of its upper left corner
be [bjz, bjy]. We then encode the position of d; within R; by the 4 dimensional

b, b b Iy
VeCtOI‘[f ”7f””’h‘9’f/’fy iy fzyhj Jy]

wj j w; 7

ture that encodes the relative scale of d; within R;: 8- [ , '], where 8 is a
J

normalization factor that makes the values range roughly between 0 and 1. We

also augment each descriptor x; with RGB, HSV and LAB color values of the

pixel at f; = [fiz, fiy] scaled to the range [0, 1], for a total of 9 extra dimensions.

. Similarly, we define a 2 dimensional fea-

3.1 Multiple Local Descriptors

In practice we used three different local descriptors: SIFT [9], a variation which
we call masked SIFT (MSIFT) and local binary patterns (LBP) [25], to gen-
erate four different global region descriptors. We pool the enriched SIFT local
descriptors over the foreground of each region (eSIFT-F) and separately over
the background (eSIFT-G). The normalized coordinates used with eSIFT-G are
computed with respect to the full-image coordinate frame, making them inde-
pendent of the regions, which is more efficient as will be shown in section [l We
also pool enriched LBP and MSIFT features over the foreground of the regions
(eLBP-F and eMSIFT-F). The eMSIFT-F feature is computed by setting the
pixel intensities in the background of the region to 0, and compressing the fore-
ground intensity range between 50 and 255. In this way background clutter is
suppressed and we allow for black objects to still have contrast along the region
boundary. For efficiency reasons, we crop the image around the region bounding
box and resize the region so that its width is 75 pixels.

In total the enriched SIFT descriptors have 143 dimensions, while the adopted
local LBP descriptors [26] have 58 dimensions before and 73 dimensions after
the enrichment procedure just described.

4 Efficient Pooling over Free-Form Regions

If the putative object regions are constrained to certain shapes (e.g. rectangles
with the same dimensions, as used in sliding window methods), recognition can
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sometimes be performed efficiently. Depending on the details of each recognition
architecture (e.g. the type of feature extraction), techniques such as convolution
[4,113], integral images [27], or branch and bound [28§] allow to search over thou-
sands of regions quickly, under certain modeling assumptions. When the set of
regions R is unstructured, these techniques no longer apply.

Here, we propose two ways to speed up the pooling of local features over
multiple overlapping free-form regions. The elements of local descriptors that
depend on the spatial extent of regions must be computed independently for
each region R;, so it will prove useful to define the decomposition x = [x", x"4]
where X" represents those elements of x that depend only on image information,
and x"? represents those that also depend on R;. The speed-up will apply only
for pooling x"?, the remaining ones must still be pooled exhaustively.

Caching over Region Intersections. Pooling naively using both () or (2]
would require the computation of k - >, |Fg,| outer products and sum/max
operations. In order to reduce the number of these operations, we introduce a
two-level hierarchical strategy. The general idea is to cache intermediate results
obtained in areas of the image that are shared by multiple regions. We implement
this idea in two steps. First we reconstruct the regions in R by sets of fine-grained
superpixels. Then each region R; will require as many sum/max operations as
the number of superpixels it is composed of, which can be orders of magnitude
smaller than the number of local features contained inside it. The number of
outer products also becomes independent of k. Regions can be approximately
reconstructed as sets of superpixels by simply selecting, for each region, those
superpixels that have a minimum fraction of area inside it.

We experimented with several algorithms to generate superpixels, including
k-means, greedy merging of region intersections, or [29], all available in our pub-
lic implementation. We adjusted thresholds to produce around 500 superpixels,
a level of granularity leading to minimal distortion of R, obtained in our exper-
iments by CPMC [30], with any of the algorithms.

Favorable Region Complements. Average pooling allows for one more speed-
up by using >, x!?, the sum over the whole image, and by taking advantage of
favorable region complements. Given each region R;, we determine whether there
are more superpixels inside or outside R;. We sum inside R; if there are fewer
superpixels inside, or sum outside R; and subtract from the precomputed sum
over the whole image, if there are fewer superpixels outside R;. This additional
speed-up has a noticeable impact for pooling over very large portions of the
image, typical in feature eSIFT-G (defined on the background of bottom-up
segments).

The last step is to assemble the pooled region-dependent and independent
components. For example, for the proposed second-order variant of max-pooling,
the desired matrix is formed as:

M maxx7? - (er)‘r
Gmax (R]) — 7 7 (3

max x;»"i . (X;»"d)—r max x;»"d . (x
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where max is performed again over i : (f; € R;) and M}* denotes the submatrix
obtained using the speed-up. The average-pooling case is handled similarly. The
proposed method is general and applies to both first and second-order pooling. It
has however more impact in second-order pooling, which involves costlier matrix
operations.

Note that when x"? is the dominant chunk of the full descriptor x, as in the
eSIFT-F described above where 96% of the elements (137 out of 143) are region-
independent, as well as for eSIFT-G where all elements are region-independent,
the speed-up can be considerable. Differently, with eMSIFT-F all elements are
region-dependent because of the masking process.

5 Experiments

We analyze several aspects of our methodology on the clean ground truth object
regions of the Pascal VOC 2011 segmentation dataset. This allows us to isolate
pure recognition effects from segment selection and inference problems and is
easy to compare with in future work. We also assess recognition accuracy in the
presence of segmentation "noise”, by performing recognition on superpixel-based
reconstructions of ground truth regions. Local feature extraction was performed
densely and at multiple scales, using the the publicly available package VLFEAT
[26] and all results involving linear classifiers were obtained with power normal-
ization on. We invite the reader to consult our available implementation for
additional details regarding these operations.

We begin with a comparison of first and second-order max and average-pooling
using SIFT and enriched SIFT descriptors. We train one-vs-all SVM models
for the 20 Pascal classes using LIBLINEAR [31]], on the training set, optimize
the C parameter independently for every case, and test on the validation set.
Table [ shows large gains of second-order average-pooling based on the Log-
Euclidean mapping. The matrices presented to the matrix log operation have

Table 1. Average classification accuracy using different pooling operations on raw lo-
cal features (e.g. without a coding stage). The experiment was performed using the
ground truth object regions of 20 categories from the Pascal VOC2011 Segmentation
validation set, after training on the training set. The second value in each cell shows
the results on less precise superpixel-based reconstructions of the ground truth regions.
Columns 1MaxP and 1AvgP show results for first-order max and average-pooling, re-
spectively. Column 2MaxP shows results for second-order max-pooling and the last
two columns show results for second-order average-pooling. Second-order pooling out-
performs first-order pooling significantly with raw local feature descriptors. Results
suggest that log(2AvgP) performs best and the enriched SIFT features lead to large
performance gains over basic SIFT. The advantage of 2AvgP over 2MaxP is amplified
by the logarithm mapping, inapplicable with max.

1MaxP 1AvgP 2MaxP 2AvgP log(2AvgP)
SIFT 16.61/12.36 33.92/25.41 38.74/30.21 48.74/39.26 54.17/47.27
eSIFT 26.00/18.97 43.33/31.91 50.16/40.50 54.30/45.35 63.85/56.03
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sometimes poor conditioning and we added a small constant on their diagonal
(0.001 in all experiments) for numerical stability. Max-pooling performs worse
but still improves over first-order pooling. The power normalization improves
accuracy by 1.5% with log(2AvgP) on ground truth regions and by 2.5% on
their superpixel approximations, while the 15 additional dimensions of eSIFT
help very significantly in all cases, with the 9 color values and the 6 normalized
coordinate values contributing roughly the same. As a baseline, we tried the
popular HOG feature [4] with an 8x8 grid of cells adapted to the region aspect
ratio, and this achieved (41.79/33.34) accuracy.

Given the superiority of log(2AvgP), the remaining experiments will explore
this type of pooling. We now evaluate the combination of the proposed global
region descriptors eSIFT-F, eSIFT-G, eMSIFT-F and eLBP-F, described in sec.
and instantiated using log(2AvgP). The contribution of the multiple global
regions descriptors is balanced by normalizing each one to have Ly norm 1. It
is shown in table [2] that this fusion method, referred to by O3P (as in order 2
pooling), in conjunction with a linear classifier outperforms the feature combi-
nation used by SVR-SEGM [18§], the highest-scoring system of the the VOC2011
Segmentation Challenge [10]. This system uses 4 bag-of-word descriptors and 3
variations of HOG (all obtained using first-order pooling) and relies for some of
its performance on exponentiated-y? kernels that are computationally expensive
during training and testing. We will evaluate the computational cost of both
methods in the next subsection.

Table 2. Average classification accuracy of ground truth regions in the VOC2011
validation set, using our feature combination here denoted by O2P, consisting of 4 global
region descriptors, eSIFT-F, eSIFT-G, eMSIFT-F and eLBP-F. We compare with the
features used by the state-of-the-art semantic segmentation method SVR-SEGM |[1§],
with both a linear classifier and their proposed non-linear exponentiated-y? kernels.
Our feature combination within a linear SVM outperforms the SVR-SEGM feature
combination in both cases. Columns 3-5 show results obtained when removing each
descriptor from our full combination. The most important appears to be eMSIFT-F,
then the pair eSIFT-F/G while eLBP-F contributes less.

O2P  -eSIFT -eMSIFT -eLBP Feats. in [18]
(linear) (linear) (linear) (linear) (linear) (non-linear)
Accuracy 72.98 69.18 67.04 7248 57.44 65.99

5.1 Semantic Segmentation in the Wild - Pascal VOC 2011

In order to fully evaluate recognition performance we experimented with our
best pooling method on the Pascal VOC 2011 Segmentation dataset without
ground truth masks. We followed a feed-forward architecture similar to that of
SVR-SEGM. First we compute a pool of up to 150 top-ranked object segmen-
tation candidates for each image, using the publicly available implementation
of Constrained Parametric Min-Cuts (CPMC) [30]. Then we extract on each
candidate the feature combination detailed previously and feed these to linear
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support vector regressors (SVR) for each category. The regressors are trained
to predict the highest overlap between each segment and the objects from each
category [18, [19].

Learning. We used all 12,031 available training images in the ”Segmentation”
and ”"Main” data subsets for learning, as allowed by the challenge rules, and the
additional segmentation annotations available online [32], similarly to recent ex-
periments by Arbelaez et al [20]. Considering the CPMC segments for all those
images results in a grand total of around 1.78 million segment descriptors, the
CPMC descriptor set. Additionally we collected the descriptors corresponding
to ground truth and mirrored ground truth segments, as well as those CPMC
segments that best overlap with each ground truth object segmentation to form
a ”positive” descriptor set. We reduced dimensionality of the descriptor com-
bination from 33,800 dimensions to 12,500 using non-centered PCA [33], then
divided the descriptors of the CPMC set into 4 chunks which individually fit on
the 32 GB of available RAM memory. Non-centered PCA outperformed stan-
dard PCA noticeably (about 2% higher VOC segmentation score given a same
number of target dimensions), which suggests that the relative average magni-
tudes of the different dimensions are informative and should not be factored
out through mean subtraction. We learned the PCA basis on the reduced set
of ground truth segments plus their mirrored versions (59,000 examples) which
takes just about 20 minutes.

We pursued a learning approach similar to those used in object detection
[13], where the training data also rarely fits into main memory. We trained an
initial model for each category using the ”positive” set and the first chunk of
the CPMC descriptor set. We stored all descriptors from the CPMC set that
became support vectors and used the learned model to quickly sift through the
next CPMC descriptor chunk while collecting hard examples (outside the SVR
e-margin). We then retrained the model using the positive set together with
the cache of hard negative examples and iterated until all chunks had been
processed. We warm-started the training of a new model by reusing the previous
« parameters of all previous examples and initializing the values of «, for the
new examples to zero. We observed a 1.5-4x speed-up.

Efficiency of Feature Extraction. Using 150 segments per image, the highly
shape-dependent eMSIFT-F descriptor took 2 seconds per image to compute.
We evaluated the proposed speed-ups on the other 3 region descriptors, where
they are applicable. Naive pooling from scratch over each different region took
11.6 seconds per image. Caching reduces computational time to just 3 seconds
and taking advantage of favorable segment complements reduces time further
to 2.4 seconds, a 4.8x speed-up over naive pooling. The timings reported in this
subsection were obtained on a desktop PC with 32GB of RAM and an i7-3.20GHz
CPU with 6 cores.

Inference. A simple inference procedure is applied to compute labelings biased
to have relatively few objects. It operates by sequentially selecting the segment
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and class with highest score above a “background” threshold. This threshold is
linearly increased every time a new segment is selected so that a larger scor-
ing margin is required for each new segment. The selected segments are then
"pasted” onto the image in the order of their scores, so that higher scoring seg-
ments are overlaid on top of those with lower scores. The initial threshold is
set automatically so that the average number of selected segments per image
equals the average number of objects per image on the training set, which is
around 2.2, and the linear increment was set to 0.02. The focus of this paper is
not on inference but on feature extraction and simple linear classification. More
sophisticated inference procedures could be plugged in [18, 19, 34, 135].

Results. The results on the test set are reported in table @ The proposed
methodology obtains mean score 47.6, a 10% and 15% improvement over the
two winning methods of the 2011 Challenge, which both used the same non-
linear regressors, but had access to only 2,223 ground truth segmentations and
to bounding boxes in the remaining 9,808 images during training. In contrast,
our models used segmentation masks for all training images. Besides the higher
recognition performance, our models are considerably faster to train and test,
as shown in a side-by-side comparison in Table Bl The reported learning time of
the proposed method includes PCA computation and feature projection (but not
feature extraction, similarly in both cases). After learning, we project the learned
weight vector to the original space, so that at test time no costly projections are
required. We observed that reprojecting the learned weight vector did not change
recognition accuracy at all.

Table 3. Efficiency of our regressors compared to those of the best performing method
[18] on the Pascal VOC 2011 Segmentation Challenge. We train and test on the large
VOC dataset orders of magnitude faster than |[1&] because we use linear support vector
regressors, while [18] requires non-linear (exponentiated-y?) kernels. While learning is
130 times faster with the proposed methodology, the comparative advantage in predic-
tion time per image is particularly striking: more than 20,000 times quicker. This is
understandable, since a linear predictor computes a single inner product per category
and segment, as opposed to the 10,000 kernel evaluations in |18], one for each support
vector. The timings reflect an experimental setting where an average of 150 (CPMC)
segments are extracted per image.

Feature Extr.  Prediction Learning
Exp-x? [18] (7 descript.)  7.8s / img.  87s / img. 59h / class
O2P (4 descript.)  4.4s / img. 0.004s / img. 26m / class

5.2 Caltechl101

Semantic segmentation is an important problem, but it is also interesting to
evaluate second-order pooling more broadly. We use Caltech101 [11] for this
purpose, because despite its limitations compared to Pascal VOC, it has been
an important testbed for coding and pooling techniques so far. Most of the
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2
Potted Plant

Fig. 1. Examples of our semantic segmentations including failures. There are typical
recognition problems: false positive detections such as the tv/monitor in the kitchen
scene, and false negatives like the undetected cat. In some cases objects are correctly
recognized but not very accurately segmented, as visible in the potted plant example.

Table 4. Semantic segmentation results on the VOC 2011 test set ﬂﬂ] The proposed
methodology, O2P in the table, compares favorably to the 2011 challenge co-winners
(BONN-FGT [19] and BONN-SVR [1€]) while being significantly faster to train and
test, due to the use of linear models instead of non-linear kernel-based models. It is
the most accurate method on 13 classes, as well as on average. While all methods
are trained on the same set of images, our method (O2P) and BERKELEY [20] use
additional external ground truth segmentations provided in m], which corresponds
to comp6. The other results were obtained by participants in compd of the VOC2011
challenge. See the main text for additional details.

O2P BERKELEY BONN-FGT BONN-SVR BROOKES NUS-C NUS-S

background 85.4 83.4 83.4 84.9 79.4 772 79.8
aeroplane 69.7 46.8 51.7 54.3 36.6 40.5 41.5
bicycle  22.3 18.9 23.7 23.9 18.6 19.0 20.2
bird 45.2 36.6 46.0 39.5 9.2 284 304
boat 44.4 31.2 33.9 35.3 11.0 27.8 29.1
bottle 46.9 42.7 49.4 42.6 29.8 40.7 474
bus 66.7 57.3 66.2 65.4 59.0 56.4  61.2
car 57.8 47.4 56.2 53.5 50.3 45.0  47.7
cat 56.2 44.1 41.7 46.1 25.5 33.1  35.0
chair 13.5 8.1 10.4 15.0 11.8 7.2 8.5
CcCow 46.1 39.4 41.9 47.4 29.0 374 38.3
diningtable 32.3 36.1 29.6 30.1 24.8 174 145
dog 41.2 36.3 24.4 33.9 16.0 26.8  28.6
horse 59.1 49.5 49.1 48.8 29.1 33.7 36.5
motorbike 55.3 48.3 50.5 54.4 47.9 46.6  47.8
person  51.0 50.7 39.6 46.4 41.9 40.6 425
pottedplant 36.2 26.3 19.9 28.8 16.1 23.3 28.5
sheep 50.4 47.2 44.9 51.3 34.0 33.4 378
sofa 27.8 22.1 26.1 26.2 11.6 239 264
train 46.9 42.0 40.0 44.9 43.3 41.2 43.5
tv/monitor 44.6 43.2 41.6 37.2 31.7 38.6 45.8

Mean 47.6 40.8 41.4 43.3 31.3 35.1 377
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Table 5. Accuracy on Caltech101 using a single feature and 30 training examples per
class, for various methods. Regions/segments are not used in this experiment. Instead,
as typical for this dataset (SPM, LLC, EMK), we pool over a fixed spatial pyramid with
3 levels (1x1, 2x2 and 4x4 regular image partitionings). Results are presented based on
SIFT and its augmented version eSIFT, which contains 15 additional dimensions.

Aggregation-based methods Other
SIFT-0,P eSIFT-0,P SPM [3] LLC [36] EMK [37] MP [6] NBNN [38] GMK [39]
79.2 80.8 64.4 73.4 74.5 77.3 73.0 80.3

literature on local feature extraction, coding and pooling has reported results on
Caltech101. Many approaches use max or average-pooling on a spatial pyramid
together with a particular feature coding method |3, 136, 137]. Here, we use the
raw SIFT descriptors (e.g. no coding) and our proposed second-order average-
pooling on a spatial pyramid. The resulting image descriptor is somewhat high-
dimensional (173.376 dimensions using SIFT), due to the concatenation of the
global descriptors of each cell in the spatial pyramid, but because linear classifiers
are used and the number of training examples is small, learning takes only a few
seconds. We also experimented using SVM with an RBF-kernel but did not
observe any improvement over the linear kernel.

Our proposed pooling leads to the best accuracy among aggregation methods
with a single feature, using 30 training examples and the standard evaluation pro-
tocol. It is also competitive with other top-performing, but significantly slower al-
ternatives. Our method is very simple to implement, efficient, scalable and requires
no coding stage. The results and additional details can be found in table[5l

6 Conclusion

We have presented a framework for second-order pooling over free-form regions
and applied it in object category recognition and semantic segmentation. The
proposed pooling procedures are extremely simple to implement, involve few
parameters and obtain high recognition performance in conjunction with linear
classifiers and without any encoding stage, working on just raw features. We also
presented methods for local descriptor enrichment that lead to increased perfor-
mance, at only a small increase in the global region descriptor dimensionality,
and proposed a technique to speed-up pooling over arbitrary free-form regions.

Experimental results suggest that our methodology outperforms the state-of-
the-art on the Pascal VOC 2011 semantic segmentation dataset, using regressors
that are 4 orders of magnitude faster than those of the most accurate methods
[18]. We also obtain state-of-the-art results on Caltech101 using a single descrip-
tor and without any feature encoding, by directly pooling raw SIFT descriptors.

In future work, we plan to explore different types of symmetric pairwise feature
interactions beyond multiplicative ones, such as max and min. Source code
implementing the techniques presented in this paper is publicly available online
from our websites.
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