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Abstract. In this work, we introduce a novel pairwise rotation invariant
co-occurrence local binary pattern (PRI-CoLBP) feature which incorpo-
rates two types of context - spatial co-occurrence and orientation co-
occurrence. Different from traditional rotation invariant local features,
pairwise rotation invariant co-occurrence features preserve relative angle
between the orientations of individual features. The relative angle de-
picts the local curvature information, which is discriminative and rota-
tion invariant. Experimental results on the CUReT, Brodatz, KTH-TIPS
texture dataset, Flickr Material dataset, and Oxford 102 Flower dataset
further demonstrate the superior performance of the proposed feature on
texture classification, material recognition and flower recognition tasks.

1 Introduction

Designing effective features is a fundamental problem in many computer vision
tasks, including image retrieval, object and scene recognition, texture classifica-
tion, etc. However, in many real applications, there always exists large intra-class
variation due to different 3D poses and different object appearance. Sometimes,
intra-class variation is even larger than inter-class variation when the objects
from different classes have the same 3D pose. It therefore becomes crucial to
design discriminative features.

It has been proved that co-occurrence of features could boost the discrimi-
native power of features. Observing co-occurrence of two features could provide
much more information than observing occurrence of two features individually.
Roughly, existing co-occurrence methods can be divided into two categories. One
category does not consider the spatial co-occurrence, such as the work [1]. In this
work, authors proposed to mine co-occurrence statistics of SIFT [2] words in a
whole image for visual recognition. In contrast, the other category takes the
spatial co-occurrence into account, such as the color co-occurrence histogram
[3] and co-occurrence of histogram of orientation gradient(CoHoG) [4]. Color
co-occurrence just calculates co-occurrence statistics of color pixels in a fixed
spatial distance K, and CoHoG is a co-occurrence histogram of pairs of gradient
orientations with various positional offsets.
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However, many vision applications also suffer from the geometric and pho-
tometric variations. So, how to design invariant features becomes another im-
portant vision problem and have been studied over decades. Unfortunately, few
works in the literature have investigate the problem of invariant properties of
spatial co-occurrence features.

Different from traditional features defined on a single point, co-occurrence
features are defined on two points, which inevitably introduces the problem
of point correspondence when considering the transformation invariance. More
specifically, considering a spatial co-occurrence feature defined on two points,
we shall first guarantee the correct point correspondence after a transformation
then study the feature invariance. We call such kind of transformation invariance
”pairwise transformation invariance (PTI)”. Moreover, points used to define co-
occurrence feature usually have a predetermined structure, which means we can
select one point as the base point and find other points based on a set of map-
ping functions. Using this method, a co-occurrence feature can be regarded as a
traditional feature defined on a single point.

In this paper, we investigate the problem of pairwise transformation invari-
ance, and point out that a PTI feature can be regarded as a transformation
invariant feature when these mapping functions meet some constraints. Based
on these studies, we extend the traditional local binary pattern (LBP) feature
to a pairwise rotation invariant co-occurrence LBP feature. Instead of simply
encoding co-occurrence of two individual rotation invariant feature, we propose
an effective encoding strategy, which well preserves the information of relative
orientation angle θ as shown in Fig. 1. The relative orientation angle θ is rotation
invariant and capable of capturing local curvature information which is discrim-
inative. Moreover, we propose to extend the proposed co-occurrence feature to
encode multi-scale and multi-orientation information.

Experimental results show that the proposed PRI-CoLBP is rotation invari-
ant and effective for many applications. Compared with the state-of-the-art ap-
proaches on texture classification, material recognitions and flower recognition
on five benchmark datasets, our feature demonstrates superior performance.

The rest of the paper is organized as follows. In section 2, we first introduce
some related works. And then, in section 3, we elaborate our proposed methods.
Experimental results will be presented in section 4. Finally, we give a conclusion
and discuss future works in section 5.

2 Preliminaries on LBP

The LBP operator was first proposed by Ojala et al. [5] as a gray-scale invariant
texture measure. For each pixel on the image, threshold its circularly symmetric
neighbor set of P members Np(x) on a circle of radius R with the center value
and consider the result as a binary number. The LBP operator ψP,R(x) could
be written as follows:

ψP,R(x) =
P−1∑

p=0

sp(x)2
p (1)
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sp(x) =

{
1, V (Np(x)) ≥ V (x)

0, V (Np(x)) < V (x)
(2)

Where x is a coordinate, Np(x) is the pth neighbor of point x, and V(x) is the
pixel value of point x. Note that, the function sp(x) isn’t affected by changes in
mean luminance, hence, LBP could achieve gray-scale invariance.

The image rotation always results in a rotation permutation of pixel R-
Neighbor set Np(x) and possibly changes the LBP value. In order to achieve
rotation invariance, Ojala et al.[5] defines the rotation invariant LBP as follows:

ψri
P,R(x) = min{ROR(ψP,R(x), i) | i ∈ [0, P − 1]} (3)

where ROR(x, i) performs a circular bit-wise right shift for i times on P -bit
number x.

Ojala et al. also observed that patterns with very few spatial transitions de-
scribe the fundamental properties of image microstructure. These patterns are
called ”uniform patterns”. For example pattern 11110000 describes a local edge,
and pattern 11111111 describes a flat region or a dark spot. To formally define
the uniform patterns, they introduce a uniformity measure U(x),

U(x) =

P∑

p=1

|sp(x)− sp−1(x)| (4)

where sP (x) is defined as s0(x). For the uniform patterns, U(x) ≤ 2.
To make the further discussion simple, we will limit our discussion on LBP8,1

1

patterns and use the term LBP instead. The result can be easily extended to
general LBP patterns. Here are some statistical result of LBP8,1 patterns which
will be used in later sections. There are 58 unique uniform patterns. Usually, an
additional pattern is used to represent the non-uniform patterns. Therefore, the
uniform LBP histogram consists of 59 patterns. For rotation invariant uniform
LBP, it consists of 10 patterns.

3 Pairwise Rotation Invariant Co-occurrence Local
Binary Pattern

Different from traditional local features which are defined in the neighborhood
of a single point, co-occurrence features are defined on the neighborhood of
two points. As shown in Fig. 1, CoLBP features can be used to describe more
complex image structure. This is essentially the same as the co-occurrence matrix
introduced by Haralick et al. [6].

In this section, we first introduce a new concept called pairwise transforma-
tion invariant and analyze its properties. And then, according to the proposed
concept, we design a specific pairwise co-occurrence feature called pairwise ro-
tation invariant CoLBP(PRI-CoLBP). Finally, we introduce some extensions
to the PRI-CoLBP.
1 LBP8,1 means P=8 and R=1.
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Fig. 1. An illustration of co-occurrence local binary pattern. Co-occurrence LBP could
encode more complex structure. Meanwhile, no matter how the image rotates, the
relative angle θ is rotation invariant, and the relative angle describes the local curvature
information which is discriminative.

3.1 Pairwise Transformation Invariant

Notation: f(A) is a local feature defined on the neighborhoods of point A.
F (A,B) is a co-occurrence feature defined on the neighborhoods of point A
and point B. If point B can be determined by point A using B = ϕ(A), the
co-occurrence feature F (A,B) can be therefore defined as ζ(A) = F (A,ϕ(A)),
where ϕ(.) is mapping function from A to B, and η(.) is an in-plane transforma-
tion defined on an image.

Transformation Invariant(TI): f(A) is invariant to transformation η(.) if
and only if

f(A) = f(η(A)) (5)

Pairwise Transformation Invariant(PTI): The co-occurrence feature
F (A,B) is pairwise invariant to transformation η(.) if and only if

F (A,B) = F (η(A), η(B)) (6)

TI Versus PTI: PTI feature is different from TI feature. PTI feature is defined
on a pair of points and TI feature is defined on a single point. We can easily
verify that the co-occurrence of two TI features is a PTI feature because

F (η(A), η(B)) = [f1(η(A)), f2(η(B))]co

= [f1(A), f2(B)]co

= F (A,B)

where f1(.) and f2(.) areTI features invariant to transformation η(.), and [f1(η(A)),
f2(η(B))]co can be considered as the concatenation of the two features. With dif-
ferent choices of local features f1(.) and f2(.), it will lead to different encoding
strategies for co-occurrence features. However, pairwise transformation invariant
isn’t the simple combination of two transformation invariant features. From the
Fig. 1, the relative orientation angle θ is rotation invariant, but the angle θ cannot
be encoded by two individual rotation invariant features.
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Moreover, a PTI feature is usually not a TI feature, because PTI feature
is defined on two points and doesn’ t guarantee that the correspondence of two
points is invariant to the transformation. Fortunately, most spatial co-occurrence
features have a predetermined structure, which means the two points used to
define the co-occurrence feature are interdependent. Using this assumption, we
can convert a PTI feature to a TI feature. We have the following lemma.

Lemma 1. Suppose B = ϕ(A), then F (A,B) can be denoted as F (A,ϕ(A))
which is defined on a single point, here, we denote ζ(A) = F (A,ϕ(A)), feature
ζ(A) is transformation invariant if the function F is pairwise transformation in-
variant and η(ϕ(A)) = ϕ(η(A)).

Proof:

ζ(η(A)) = F (η(A), ϕ(η(A)) = F (η(A), η(ϕ(A))

since function F is PTI, using Eq. 6, we have

ζ(η(A)) = F (A,ϕ(A)) = ζ(A)

Based on Eq. 5, ζ(A) is therefore transformation invariant.
A direct explanation of Lemma 1 is that B = ϕ(A) and η(ϕ(A)) = ϕ(η(A))

means that for reference point A, target point B could be uniquely determined.
Meanwhile, the PTI property of function F guarantees that for the same pairs
A and B, PTI feature F (A,B) is transformation invariant.

3.2 Pairwise Rotation Invariant CoLBP

Based on the definition of co-occurrence in section 3.1, it is straightforward to de-
rive a CoLBP feature, ΨUU (A,B) = [ψU (A), ψU (B)]co, where ψ

U (.) is a uniform
LBP feature, denoted as UU-CoLBP. However, UU-CoLBP has two problems.
First, its dimension is high. The dimension of UU-CoLBP is 59*59=3481. Sec-
ond, it is easy to verify that UU-CoLBP is not pairwise rotation invariant.

To overcome the drawbacks of UU-CoLBP, an intuitive choice is co-occurrence
of two rotation invariant features, such as ΨRU (A,B) = [ψRU (A), ψRU (B)]co,
where ψRU (.) is uniform rotation invariant LBP feature. Here, we denote it as
RURU-CoLBP. However, RURU-CoLBP discards the relative angle information
between A and B, which captures the curvature information.

To preserve the discriminative curvature information, we propose an effective
pairwise rotation invariant CoLBP(PRI-CoLBP). Before introducing it, we will
first introduce some related concept and then define PRI-CoLBP.

Uniform LBP depends on the direction which determines the start point of
its circular binary sequence. Defined on different directions, uniform LBP has
different values. Therefore, we introduce a uniform oriented-LBP. Suppose η(., α)
is a 2D plane rotation transformation with degree α. Uniform oriented-LBP could
be defined as:

ψ̂U (A,α) = ψU (η(A,−α)) (7)



Pairwise Rotation Invariant Co-occurrence Local Binary Pattern 163

Fig. 2. An illustration of pairwise rotation invariant. For the left pairs, we first deter-
mine orientation i(A) of the reference point A, then we compute the uniform pattern of
B according to i(A), we get co-patterns [(00001111)RU , (01111100)U ]co. For the rotated
pairs in the right side, we could also get the same co-patterns.

which is defined on point A and the direction α. We can easily find that ψ̂U

(η(A, β), α) = ψU (η(A, β − α)).
Defined on a arbitrary direction, all the neighbors are not on the grid points, it

will bring in more interpolation calculations to compute the binary sequence. In
practice , ψ̂U (A,α) can be approximated byROR(ψU (A), [ 8∗α2π ]), whereROR(., .)
performs a circular bit-wise right shift like Eq. 3.

Using this definition, the PRI-CoLBP feature can be defined as following:

ΨPRI(A,B) = [ψRU (A), ψ̂U (B, ϑ(A))]co (8)

where ϑ(A) is an orientation determined by A, such as the gradient orientation
of point A. We can easily verify that
ΨPRI(η(A,α), η(B,α)) = [ψRU (η(A,α)), ψ̂U (η(B,α), ϑ(η(A,α)))]co
Note that, the first term is invariant to the rotation transformation, and using

the definition of oriented-LBP, the second term can be rewritten as:

ψ̂U (η(B,α), ϑ(η(A,α))) = ψU (η(B,α− ϑ(η(A,α)))

Actually, α− ϑ(η(A,α)) = −ϑ(A), so we have

ψ̂U (η(B,α), ϑ(η(A,α))) = ψU (η(B,−ϑ(A))) = ψ̂U (B, ϑ(A))

Therefore the CoLBP pattern ΨPRI(A,B) is pairwise rotation invariant. The
function ΨPRI(A,B) defined above can well capture the relative orientation
information. Moreover, it is pairwise rotation invariant. As shown in Fig. 2

shows, for the left point pair, we first compute the [ 8∗ϑ(A)
2π ] and denote it as

i(A). Using i(A) as the start point for the binary sequence of point B, we get
the co-occurrence feature [(00001111)RU , (01111100)U]co, where (00001111)RU

means a rotation invariant uniform LBP code and (01111100)U means a uni-
form LBP code. For the co-occurrence pattern, we use the gradient magnitude
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of two points to weight the co-pattern. For a whole image region, dense sam-
pling of each pixels is applied to obtain an accumulated co-occurrence histogram.
Since (00001111)RU = 4 and (01111100)U = 8, the accumulated histogram
H(4, 8) = H(4, 8) +M(A) +M(B), where M(A) and M(B) are the gradient
magnitude of point A and B and H is 2D histogram with dimension 10× 59.

In Eq. 8, we have introduced an effective pairwise rotation invariant func-
tion ΨPRI(A,B). In order to achieve rotation invariant, we should ensure that
η(ϕ(.)) = ϕ(η(.)) is satisfied, which means that the target point B could be
uniquely ascertained no matter how the image is rotated. Denote the vector of
unit gradient direction of point A as g(A) and the vector of unit normal direction
of point A as n(A), here, we can define ϕ(A) as:

ϕ(A) = a ∗ g(A) + b ∗ n(A) +A (9)

where a and b are two parameters. A is the coordinates. ϕ(A) is defined on the
local polar coordinate with x axis g(A) and y axis n(A). It is easy to prove that
the definition of ϕ(.) satisfies the condition η(ϕ(.)) = ϕ(η(.)). With different
choices of a and b, it will lead to different function ϕ(.). For example, a = 2 and
b = 0 mean that the point B can be determined as 2 pixels distance from A
along with the gradient direction.

For applications, which do not have large rotation variation, we can directly
define the function ϕ(.) along with the horizontal and vertical unit direction. In
this way, the feature is non-rotation invariant, but it takes less time to process an
image because for rotation invariant, there are more interpolation computations
than non-rotation invariant. Therefore, in this paper, we define the rotation
invariant PRI-CoLBP feature which is computed along with gradient and normal
unit direction as PRI-CoLBPg and define the non-rotation invariant PRI-CoLBP
feature which is computed directly along with the horizontal and vertical unit
direction as PRI-CoLBP0.

3.3 Extension Using Multi-scale and Multi-orientation, Color, PCA

A PRI-CoLBP co-pattern only captures local texture co-occurrence from a single
scale and orientation. In order to describe multi-scale and multi-orientation local
image structure, we extend PRI-CoLBP to multi-scale and multi-orientation
PRI-CoLBP (MSMO PRI-CoLBP). As shown in Fig. 3, for each reference point
A, we extract PRI-CoLBP patterns from point pairs (A,Bi) in multi-scale and
multi-orientation. In order to achieve rotation invariance, we assume point Bi =
ϕi(A) and the function ϕi(.) is defined on the local polar axis with the unit
gradient direction as its x axis and the unit normal direction as its y axis.
Using this strategy, we extract 6 co-occurrence patterns in three scales and two
orientations, resulting in a vector with dimension 6× 590 = 3540.

For applications, such as flower recognition [7][8][9], color has proven to be com-
plementary to texture and shape information. In order to incorporate color infor-
mation into PRI-CoLBP feature, MSMO PRI-CoLBP feature in three color chan-
nels are extracted and concatenated into a vector with dimension 3540 × 3 =
10620. Fortunately, many patterns don’t co-occur together. Thus, the resulting
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Fig. 3. MSMO PRI-CoLBP features are extracted in the local polar coordinate system
defined on gradient direction and normal direction. First, PRI-CoLBP features from
two scales and three orientations are concatenated. Then, multi-scale multi-orientation
CoLBP features from three color channels are extracted and concatenated. Finally,
PCA algorithm is used to remove redundancy.

co-occurrence feature is very sparse and standard dimensionality reduction tech-
nologies can be applied, such as principal component analysis(PCA). Based on our
empirical study, when we decrease the dimension of PRI-CoLBP to around 120 to
150, it gets similar and even better performance than the original PRI-CoLBP.

4 Experimenatal Results

In this section, we first introduce some experimental details. Then, we compare
three kinds of different encoding strategies. After that, we validate the rotation
invariant property of PRI-CoLBP. Finally, we show the applications of PRI-
CoLBP on texture classification, material and flower recognition.

4.1 Implementation Details

In this paper, we evaluate the proposed feature on Brodatz[10], CUReT[11],
KTH-TIPS[12], Flickr Material Database(FMD) [13] and Oxford Flower 102
data set [7]. For all datasets, we extract MSMO PRI-CoLBP features in 3 scales
and 2 orientations. Since we extract MSMO PRI-CoLBP in all experiments, to
make the notation simple, we abbreviate MSMO PRI-CoLBP as PRI-CoLBP.
For Brodatz, KTH-TIPS and FMD, only gray scale images are used. For CUReT
and Oxford Flower 102, 3 color channels are utilized to extract color PRI-CoLBP’
features. For the three texture data sets, LBP8,2 is used to calculate PRI-CoLBP.
For flower and FMD, LBP8,1 is used instead.

Classification Method. SVM classifier with χ2 kernel is widely used and
proven effective in [14]. In [15], Vedaldi et al. propose an efficient additive ker-
nel approximation(AKA) method, which enables fast training/evalution using
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linear SVM and is scalable to large data set. When PCA is applied to remove
redundancy, SVM with RBF kernel will be used. For all SVM classifiers, one-vs-
all scheme is used. We will compare these three classification strategies. For fair
comparison with other features, we use the same classification method.

Notation. As described in section 3.2, we define two kind of PRI-CoLBP,
non-rotation invariant PRI-CoLBP0 and rotation invariant PRI-CoLBPg. For
three texture classification tasks, there is only small rotation variation in these
datasets. Therefore, we use PRI-CoLBP0. For FMD and flower recognition, we
use PRI-CoLBPg. In section 4.3, we will compare PRI-CoLBP0 and PRI-CoLBPg.

Computational Cost. Like the traditional LBP operator, the extraction for
PRI-CoLBP is very fast. On a desktop computer with dual-core 2.8G CPU, the
c++ implementation of PRI-CoLBP0 takes about 0.005 second for an 200 ×
200 image and it takes about 0.031 second to extract PRI-CoLBPg. The fast
extraction property enables the proposed feature for large scale problem.

4.2 Encoding Strategies for CoLBP

In section 3.2, we propose three CoLBP features, PRI-CoLBP, RURU-CoLBP
and UU-CoLBP, where PRI-CoLBP and RURU-CoLBP are pairwise rotation
invariant and UU-CoLBP is not. We conduct experiments to compare the effec-
tiveness of these three encoding strategies. For all experiments, we use direct χ2

kernel SVM. For Brodatz, KTH-TIPS and FMD, we separately use 3, 40 and 50
samples for training and the rest for test. The results are shown in Tab. 1.

Table 1. Comparison of encoding strategies: RURU-CoLBP, UU-CoLBP, PRI-CoLBP

Dataset RURU-CoLBP UU-CoLBP PRI-CoLBP

Brodatz(3) 93.9% 95.7% 96.6%
KTH-TIPS(40) 96.4% 97.9% 98.3%

FMD(50) 52.1% 50.6% 56.5%

From Table 1, we can find that PRI-CoLBP outperforms the other two encod-
ing strategies in all three data sets. Especially on FMD data set, PRI-CoLBP
achieves about 5% higher performance. It means that the relative orientation
angle in Fig. 1 is discriminative and PRI-CoLBP is effective on capturing the
curvature information.

The reason why UU-CoLBP works well on Brodatz and KTH-TIPS is that
these two data sets don’t have large rotation variation. But on FMD data set
with normal rotation variation, UU-CoLBP works worse than RURU-CoLBP.
Overall, PRI-CoLBP performs well on all datasets, it proves the effectiveness of
the spatial co-occurrence and the relative angle information is well described.

4.3 Rotation Invariant

In this subsection, we conduct experiments to validate the rotation invariance
property of PRI-CoLBPg. Here, we will compare PRI-CoLBPg and PRI-CoLBP0
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in the cases of with and without notable rotation variance. The experiments are
conducted on KTH-TIPS, CUReT and FMD data sets. As there are only small
rotation variation in KTH-TIPS and CUReT, we generate two new data-sets by
adding arbitrary rotations to the two data-sets.

For the images int the FMD data-set have normal rotation variations, so
we just compare PRI-CoLBP0 and PRI-CoLBPg directly. For KTH-TIPS and
CUReT, we perform two experimental comparisons on original data-sets and the
newly generated data-sets with arbitrary rotations.

Newly Generated Data-sets: For KTH-TIPS, we first rescale each image to
1.5 times of its original size and then randomly rotate the image to a random
angle. After that, we crop an image of same size as the original image from
the center of the rotated image. This can guarantee that no black region will
be cropped out. For CUReT, each image is rotated randomly and then a sub
image of size 141*141 is cropped out from the center of the rotated images. In
this way, we can create a corresponding modified data-set with same number of
images. Note that, the rotating and cropping will lead to information loss and
rotation variations. Same training samples and classification methods are used.
The experimental results are shown in Tab. 2.

Table 2. Comparison of PRI-CoLBP0 and PRI-CoLBPg on KTH-TIPS, CUReT, FMD
data sets and modified KTH-TIPS and CUReT data sets

Rotation PRI-CoLBP0 PRI-CoLBPg

KTH-TIPS(40)
No Rotation 98.8% 98.8%

Arbitrary Rotation 90.8% 96.4%

CUReT(46)
No Rotation 99.2% 98.9%

Arbitrary Rotation 89.1% 94.7%

FMD(50) Normal Rotation 53.4% 56.5%

From Tab. 2, we can see that PRI-CoLBPg outperforms PRI-CoLBP0 for
5.6% and 5.6% on the modified KTH-TIPS and CUReT, which have arbi-
trary rotation. It proves the effectiveness of the rotation invariant property of
PRI-CoLBPg. On FMD with normal rotation, PRI-CoLBPg also outperforms
PRI-CoLBP0 for 3.1%, It further proves the effectiveness of rotation invari-
ance. On the datasets with small rotation variations, both PRI-CoLBPg and
PRI-CoLBP0 work well and have similar performance. We can also find that the
average performance on the modified data sets is lower than the performance
on the original data set. This is mainly due to the heavy information loss and
rotation variations brought by rotating and cropping.

4.4 Applications

Texture Classification: Brodatz contains 111 classes, each with 9 images.
In our experiments, we use 3 samples for training and the rest for testing.
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For CUReT, we use the same subset of images as [16][17], which contains 61
texture classes, each with 92 images. We use 46 samplers per class for training
and the rest 46 for testing. For KTH-TIPS, it consists of 10 texture classes,
each with 81 images, captured at nine scales, viewed under three different il-
lumination directions and three different poses. We use 40 images per class for
training and the rest for testing. The work of Zhang et al. [14] is widely recog-
nized as the state-of-the-art method. Recently, Nguyen et al. [18] proposed to
use multivariate log-gaussian cox processes for texture classification.

The experimental results are shown in Tab. 3. All the results are originally
reported except the result of multi-scale LBP(MSLBP) which is based on the
standard implement2 using SVM with χ2 kernel.

Table 3. Texture Classification results on Brodatz, CUReT and KTH-TIPS data-sets.
For Brodatz, 3 training images are used and 46 for CUReT, 40 for KTH-TIPS.

Methods Brodatz(3) CUReT(46) KTH-TIPS(40)

PRI-CoLBP0 96.6% 98.6% 98.3%
PRI-CoLBP0(PCA) 96.0% 99.2% 98.8%
PRI-CoLBP0(AKA) 96.8% 98.5% 97.6%

Nguyen et al.[18] 96.1% — 95.7%
Zhang et al.[14] 95.9% 95.3% 96.1%
VZ-Patch[16] 92.9% 98.0% 92.4%

Caputo et al.[17] 95.0% 98.5% 94.8%
Lazebnik et al.[19] 88.2% 72.5% 91.3%

MSLBP[5] 91.6% 96.3% 92.2%

From Tab. 3, PRI-CoLBP0 significantly outperforms its direct competitor
MSLBP on all the three datasets. Meanwhile, PRI-CoLBP0 obviously outper-
forms [14] and [18] on all the three datasets. Compared with [14] and [18], the
proposed feature reduces the average error rate from about 4% to 2% which is
equivalent to reduce the errors by 50%. Although all classification methods have
slightly different performance, they generally work well.

The reason why PRI-CoLBP0 greatly outperforms MSLBP is that PRI-CoLBP0

effectively captures spatial context co-occurrence and preserves relative orienta-
tion angle information, and the spatial context and relative orientation infor-
mation are greatly discriminative, whereas multi-scale LBP ignores the spatial
information. Although KTH-TIPS contains scale variation (9 scales and 81 im-
ages per class), the scale changes continually from 0.5 to 2 and the variation
is relatively small. Thus, PRI-CoLBP0 works well on this data set and obtains
an accuracy of 98.3%, which significantly outperforms the best result 96.1%.
The experimental result on KTH-TIPS indirectly reflects that PRI-CoLBP0 is
insensitive to small scale variation.

2 http://www.cse.oulu.fi/MVG/Downloads
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Material Recognition: FMD is a newly published material dataset, which is
considered to be challenging. FMD contains 10 classes, each with 100 images.
We use 50 samples for training and the rest for test. Experimental results are
shown in Tab. 4, where MSLBP is obtained using standard implementations.

Table 4. Experimental results on FMD dataset using 50 training samples

Methods 50

Single Feature

SIFT [21] 35%
MSLBP 43.5%

Kernel Descriptor in [20] 49%
PRI-CoLBPg 56.5%±1.8

PRI-CoLBPg(PCA) 55.2%±1.8
PRI-CoLBPg(AKA) 57.4%±1.7

Multiple Features
Liu et al. CVPR 2010 [21] 44.6%
Hu et al. BMVC 2011 [20] 54% ±2.0

From Tab. 4, for single feature, PRI-CoLBPg outperforms MSLBP for about
13% and bag-of-sift [21] for about 23%. In addition, it outperforms the best single
feature for 7.5% from 49% to 56.5%. Moreover, using same kernel SVM classifier,
PRI-CoLBPg also outperforms the previously published best performance 54%
[20] which combines five kernel descriptors.

Material recognition is highly related to texture classification. Although FMD
has normal rotation variance and the recognition task is challenging because
the material exhibits different appearances, PRI-CoLBPg is highly effective in
preserving relative angle information between co-occurrence pairs as shown in
Sec. 4.2 and also rotation invariant as shown in Sec. 4.3. As a result, PRI-CoLBPg

works very well on FMD.

Flower Recognition: Oxford Flowers 102 [7] has 8189 images which are di-
vided into 102 categories with 40 to 250 images. In [7][8][9], the authors prove
that classification with segmentation can boost the final performance. Instead
of focusing on segmentation, we use Grabcut [22] to segment the images. We
resize the foreground images to a minimum resolution of 128 and extract color
PRI-CoLBPg feature the foreground region.

The work of [7] is widely recognized as the state-of-the-art method. Recently,
Chai et al [9] achieved better result. We use the same training and testing meth-
ods as in [9] and use 20 and 30 samples for training and the rest for test.

According to [9], we reimplement the bag of Multi-Scale Dense Sampling
(MSDS) SIFT features and get performance 69.5%, which is close to their re-
ported result 70.0%. Experimental result are shown in Tab. 5.

From Tab. 5, for single feature, PRI-CoLBPg outperforms MSLBP for 27%
and another co-occurrence feature(COHED) for more than 30%. In addition,
PRI-CoLBPg also outperforms the best two single feature methods up to date.
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Table 5. Recognition performance for single features and multiple features on Oxford
Flower 102 dataset

Single Features 20 30 Multiple Features 20 30

SIFT boundary [7] 32.0% – Ito et al. [4] 53.2% –
HSV [7] 43.0% – Nilsback et al. [7] 72.8% –
HOG [7] 49.6% – Yuan et al. [23] 74.1% –

SIFT internal [7] 55.1% – Nilsback’s thesis [8] 76.8% –
CoHED [4] 48.2% – Grabcut [9] 77.0% –
MSLBP 52.0% – Chai et al.[9] 80.0% –
MSDS [9] 69.5% 73.4% PRI-CoLBPg + MSDS 84.2% 87.1%

Kanan et al [24] 71.4% 75.2%
PRI-CoLBPg 79.1% 82.3%

Specifically, it outperforms MSDS for about 10% and outperforms the work [24]
for 7.7%. For multiple features combinational methods, PRI-CoLBPg combined
with MSDS achieves an accuracy of 84.2%, which outperforms nowadays pub-
lished best result 80.0% [9] which combines four types of features.

The reason why PRI-CoLBPg works so well on flower recognition is that flower
recognition is highly related to color texture classification and color PRI-CoLBPg

well captures color and texture information. PRI-CoLBPg combined with MSDS
greatly outperforms each of single feature, it means that PRI-CoLBPg is com-
plementary to the MSDS.

5 Conclusion and Future Works

In this paper, we have studied the problem of pairwise transformation invariance,
and point out that a PTI feature can be regarded as a transformation invariant
feature when mapping functions meet some constraints. Based on the studies,
we propose an effective pairwise rotation invariant CoLBP feature which aims
to preserve relative angle information between co-occurrence pairs. The experi-
mental results show that the proposed feature effectively captures local curvature
information and demonstrates a great rotation invariant property. Moreover, the
computational cost for the proposed feature is low since most computation comes
from calculation of LBP and the image gradient.

In our future work, we will apply the proposed feature on more applications,
such as food recognition, leaf recognition, and large scale scene classification,
and test its generalization ability on these applications.
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