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Abstract. In underwater computer vision, images are influenced by the
water in two different ways. First, while still traveling through the water,
light is absorbed and scattered, both of which are wavelength dependent,
thus create the typical green or blue hue in underwater images. Secondly,
when entering the underwater housing, the rays are refracted, affecting
image formation geometrically. When using underwater images in for ex-
ample Structure-from-Motion applications, both effects need to be taken
into account. Therefore, we present a novel method for calibrating the
parameters of an underwater camera housing. An evolutionary optimiza-
tion algorithm is coupled with an analysis-by-synthesis approach, which
allows to calibrate the parameters of a light propagation model for the
local water body. This leads to a highly accurate calibration method for
camera-glass distance and glass normal with respect to the optical axis.
In addition, a model for the distance dependent effect of water on light
propagation is parametrized and can be used for color correction.

1 Introduction

Research and exploration, oil production, rescue missions, and pipeline inspec-
tions are all possible applications of cameras in underwater housings, where
geometric information can be used in for example navigation, reconstruction,
or mosaicing algorithms. In order for these algorithms to reach the best pos-
sible accuracy, refraction at the underwater housings of the cameras needs to
be taken into account. This work describes a system for calibrating the un-
derwater housings of flat port, deep sea cameras with glass ports that can be
several centimeters thick. In order to be feasible in deep sea environments, the
approach must not require 3D calibration targets or even structured light, active
calibration targets, etc. We only use a 2D checkerboard pattern for calibration
that needs to be captured from different, but unknown camera poses. In case
of rigidly coupled multi-camera rigs, checkerboard images are recorded using all
cameras simultaneously and relative transformations between the cameras of the
rig are calibrated.
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Fig. 1. Left: Refraction bends light rays at air-glass and glass-water interfaces prior
to reaching the camera (solid green line). If ignoring the effect (dashed line), the rays
do not meet in a common center of projection, but intersect an axis defined by the
camera center and the interface normal (blue), hence the single-view-point assumption
is invalid. All ray segments together with the normal nπ lie in a common plane, the
plane of refraction (POR) [1]. Right: the light traveling towards the camera after re-
flection at an object (green) is called the signal and is attenuated depending on the
distance traveled. Due to multiple scattering events, a veiling light exists within the
water (blue) that is scattered into the ray traveling towards the camera.

In case of flat-port underwater housings, the single-view-point (SVP) assump-
tion for perspective cameras is invalid, as can be observed in figure 1 on the left
when following the dashed line, i.e. ignoring refraction. Due to misalignment of
the camera within the housing, the normal of the glass interface usually does
not coincide with the optical axis. Agrawal et al. showed in [1] that underwater
cameras in flat port housings are in fact axial cameras, i.e. all rays intersect
a common axis, which is defined by the camera’s center and the glass normal.
Thus, the housing is parametrized by this normal and the distance between
camera center and glass interface.

Figure 1 on the right shows how light is affected by water while still traveling
through the water body. Depending on the light’s wavelength, it is absorbed
and scattered, thus the colors measured in the image are affected depending
on the distance traveled through the water. Therefore, the proposed method
additionally takes into account the effects on the scene colors, which create
the typical green or blue hue. Based on the checkerboard images with known
white and black areas, good calibration data for the water colors exists. After
geometric calibration, all camera poses, i.e. all distances between checkerboard
and camera are known, thus automatically calibrating water color parameters
is very opportune at this point. The resulting radiometric parameters can be
utilized for color correction in the texture images of the 3D-models as in [2].

In the following, our approach will be set into context with related work. Then,
the models for underwater light propagation and refraction at the underwater
housing will be introduced, followed by a description of the applied calibration
approach. After that, experiments, conclusion, and outlook will conclude the
article.
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2 Related Work

Camera calibration has been an important topic in the computer vision commu-
nity in the last decades. Especially for the perspective camera, a lot of different
methods exist, for example [3], [4], or [5]. Even though the SVP-assumption is
invalid for cameras in underwater housings, in the literature often one of these
methods is used with the perspective camera model on underwater images ([6],
[7]). Freyer and Fraser in [8] and Lavest et al. in [9] describe how focal length
and radial distortion absorb the model error and how approximate, perspective
calibrations for the underwater case can be computed based upon perspective
calibrations using images captured in air.

However, due to the non-SVP nature of perspective cameras within underwa-
ter housings, these calibrations always have a systematic model error and mea-
surements based on these calibrations tend to suffer from inaccuracies. Basically,
three possibilities exist to solve the problem. The first one is to use a general
camera model, i.e. calibrate a ray with starting point and direction for each
pixel ([10], [11]). Secondly, a less general axial camera model [12] can be used.
However, in case of cameras in underwater housings, a concise parametrization
can be achieved, which leads to the third possibility, where refraction is incor-
porated explicitly by modeling the camera housing. Existing works are Treibitz
et al. [13] assuming thin glass and interface-sensor parallelism. In the work of
Telem et al. [14], each point is mapped to a point eligible for perspective projec-
tion by moving the point in the image and computing the correct intersection
with the optical axis. [15] assumes a camera looking onto a water surface, thus
there is no glass involved. Kunz et al. [16] describe models for hemispherical and
flat ports and use synthetic data to experiment with inaccuracies in Structure-
from-Motion (SfM) based on the perspective model. The calibration approach is
described, but not implemented and therefore not tested. However, in contrast
to both other methods described above, the camera’s image sensor and glass in-
terface are not assumed to be parallel. Li et al. [17] develop a complete physical
model and its calibration for a stereo rig using triangulated rays in water. The
indices of refraction are assumed to be known. [18] describe a system for stereo
rigs without having to use a calibration target. The most recent approach pro-
posed by Agrawal et al. [1] showed that flat port underwater cameras are in fact
axial cameras and the authors use this insight to develop a calibration method
based on checkerboard corners. We use their method for initialization and the
contribution of our method is to add an analysis-by-synthesis (AS) approach
for geometric calibration, i.e. a rendered image of the checkerboard pattern is
compared to the real one and the difference is minimized, thus eliminating errors
introduced by inaccuracies in corner detection. AS has been successfully applied
to perspective calibration beforehand [5], [19], a disadvantage is the increased
run-time. After calibrating the geometric properties of the camera in its under-
water housing, the parameters for a physical, distance dependent color model
describing underwater light propagation are estimated. Thus effects of the local
water body on the image colors [20], [2] can be removed. Our method works for
both, monocular cameras and rigidly coupled multi-camera rigs. The proposed
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method is more general than [13], less complicated when it comes to capturing
images than [21] and [11], and works on both camera rigs and monocular cameras
as opposed to [18] and [21], which require stereo rigs.

Even in established calibration methods [5], it is well known that an ambi-
guity between parameters may exist and can cause the optimization process to
converge towards a local minimum in the error function. Therefore, instead of
using local, derivative-based optimization, we opt for using CMA-ES, short for
Covariance Matrix Adaptation Evolution-Strategy [22]. CMA-ES is a stochas-
tic procedure that performs well on non-linear, non-convex error functions with
noisy observations and has been used successfully for optimization in computer
vision applications before in [23] or [24], even in calibration routines [25]. The
next section will introduce the camera model used for calibration.

3 Physical Model and Optimization Strategy

In our method, a camera is described by its pose, parametrized by 3 parameters
for translation and 3 for rotation (Euler angles). Inside the camera housing, we
assume a calibrated, perspective camera with known focal length f , principal
point (cx, cy), and two parameters each for radial and tangential lens distortion
(r1, r2, t1, t2).

In the optimization process, there will be M cameras within a static rig,
denoted by the index j. Note, that the monocular case is included here with
M = 1. In general, the first camera is considered to be the master camera,
determining the pose of the whole rig. The other cameras (slave cameras) are
described by their relative poses with respect to the master camera. The rig will
be used to capture a set of images from N different poses, denoted with the
index i. A pixel in an image will be indexed by k, the overall number of pixels in
an image is K. For the corner-based initialization steps, the detected 2D-corners
of the checkerboard in the images will be denoted by l < L. Parameters include:

1. Geometric calibration:

– N poses of the master camera in the world coordinate system (6N),
– poses of slave cameras in the master camera coordinate system

(6(M − 1)),
– interface distance and interface normals of all cameras in the rig (3M),
– 2 parameters for each image determining gray-level offset and white

balance (2NM).

2. Radiometric calibration:

– 2 parameters for water color correction for each color channel (6), and
– 2 parameters for each color channel and image parametrizing for gray-

level offset and white balance (3MN).

In total, 6N+6(M−1)+3M+2MN parameters must be estimated during geo-
metric calibration and 6+3MN during radiometric calibration. In the following
two sections, the effects of water on image formation will be modeled.
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3.1 Radiometric Model

While still traveling through the water, the light is attenuated due to scattering
and absorption (see also fig. 1 on the right). Part of the light is reflected by
an object Lobj, here the checkerboard pattern, and directly travels toward the
camera, denoted signal S. Depending on the distance z between checkerboard
and camera, the light is attenuated [20], [2]:

S = Lobje
−ηλz, (1)

where ηλ is the attenuation coefficient, a descriptor of the local water body that
is wavelength dependent: λ ∈ {R,G,B}. R,G,B denote the three discretized
color channels. Another proportion of the light is scattered at water molecules
multiple times, thus creating a veiling light that exists within the water, colored
by B∞λ

. From the photons belonging to this group, by chance, some are scattered
into the beam traveling from the checkerboard pattern towards the camera and
add to the irradiation being incident upon a pixel of the image sensor, denoted
backscatter B:

B = B∞λ
(1− e−ηλz) (2)

Hence, the backscatter proportion measured by the image sensor increases with
increasing distance z between object and camera. The model for color in water
used here is [20]:

Iλ = αλij (S+B)+βλij = αλij (Lobje
−ηλz+B∞λ

(1−e−ηλz))+βλij , λ ∈ R,G,B
(3)

where αλij and βλij account for white balancing and offset on each of the
color channels in image ij. Equation 3 is used for estimation of αλij ,βλij , ηλ,
and B∞λ

.

3.2 Geometric Model

When entering the underwater housing, the light is refracted due to entering
a medium with different optical density. Therefore, depending on the incidence
angle, light rays change their direction to some degree. We use the same model
for the underwater housing and refraction computation as described in [18].
Refraction is computed explicitly (fig. 2) by intersecting the ray from the camera
center through the 2D point with inner and outer interface plane and applying
Snell’s law at both intersections. If ri and ri+1 are the normalized rays before
and after refraction at medium interface i with refractive indices μi and μi+1,
then [26]:

ri+1 =
μi

μi+1
ri +

(
−riμi+1r

T
i nπ +

√
1− μi

μi+1

(
1− (rTi nπ)2

))
nπ , (4)

allowing to compute the rays in glass rg and water rw using the ray in air ra. For
the calibration method described here, it is assumed that the interface thickness
dg is known as well as the indices of refraction for air, glass, and water (μa, μg, μw
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Fig. 2. Left: depicted is the POR from fig. 1. When back-projecting an image point
into the scene, the ray rcca runs from the camera through air intersecting the inner
interface plane. The refracted ray in glass rccg intersects the outer interface plane at
scc, is refracted again, yielding the ray in water rccw on which the 3D point Xcc lies.
Dashed line: classic, perspective projection.

respectively). The distance between camera center and glass d and the normal of
the glass nπ need to be calibrated. Depending on d, dg, nπ, μa, μg, and μw, each
pixel in the image xijk = (xijk , yijk), i < N, j < M, k < K can be transformed

(eq. (4)) into a ray defined by a starting point sccijk = d
rTa nπ

ra +
dg

rTg nπ
rg and a

direction rccwijk
in the local camera coordinate system, denoted by cc:

(sccijk , r
cc
wijk

) = Ray(xijk , dj ,nπj ). (5)

In favor of readability, the transform from the relative pose of the slave cameras
j > 1 to the absolute pose using the pose of the master camera is omitted, thus
all following rotations and translations are already the absolute pose. Using
the camera’s rotation matrix Rij and camera translation Cij , the ray can be
transformed into the world coordinate system, denoted by wc:

(swc
ijk, r

wc
wijk

) = (Rijs
cc
ijk +Cij ,Rijr

cc
wijk

). (6)

Based on the ray in world coordinates, zijk ∈ R can be computed such that:

Xijk = swc
ijk + zijkr

wc
wijk

= Rijs
cc
ijk +Cij + zijkRijr

cc
wijk

(7)

is the intersection of the ray with the xy-plane of the world coordinate system.
In our calibration approach, the checkerboard is set to be fixed in that plane,
with known corners X̂l, l < L, thus all z-coordinates of the checkerboard points
are zero.

Note that typical calibration routines minimize the reprojection error of 3D
points projected into images. However, in case of refractive projection, this re-
quires solving a 12th degree polynomial [1], hence it is convenient that the pro-
posed AS approach only needs the back-projection of a pixel onto its ray.

3.3 Optimization Strategy

The optimization strategy used in our method is CMA-ES. The main reason for
this is the ability of finding the global minimum even in presence of local minima.
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Fig. 3. CMA-ES iterations. Black dots are the samples drawn in each iteration, de-
termined by mean (blue rectangle) and current covariance (black ellipse). The worst
samples from each iteration are discarded (red dots), the remaining samples are used
to update covariance and mean.

Figure 3 gives an idea of the method based on an exemplary two-dimensional er-
ror function (green ellipse). The algorithm is initialized with starting parameters
(blue rectangle) and an initial parameter covariance. For each generation, a set
of random samples is drawn based on current mean and covariance. Each sample
is evaluated using the fitness function and the worst samples are eliminated (red
dots, second image in top row). Using the remaining samples, the covariance is
updated (black circle) and a new mean is computed. Those steps are repeated
until mean and covariance converge toward the global minimum. While doing
so, the covariance of the error function is adapted iteratively based on an up-
date function that uses the covariance of the last step and the new samples.
Note, that for this approach only the number of samples to be drawn in each
generation γCMA−ES and an initial covariance need to be set. For small initial de-
viations and small γCMA−ES, the optimization is local, while for large deviations
and γCMA−ES, a global search is conducted. The following section describes how
model and optimization strategy are used in the presented calibration algorithm.

4 Calibration Algorithm

The calibration algorithm described here can be separated into initialization,
geometric and radiometric optimization. During the initialization phase, the
poses of the cameras with respect to the checkerboard and initial housing pa-
rameters are computed individually. The second step is an optimization over
all cameras using an analysis-by-synthesis approach within an CMA-ES opti-
mization routine. Afterward, the parameters describing the local water body are
determined.

4.1 Corner-Based Initialization of Geometry

After taking a set of checkerboard images using the camera underwater, the
calibration process is initialized by linearly determining camera poses, interface
distances, and normals for each camera individually using the method described
in [1]. Initialization is followed by a corner-based, non-linear optimization of the
camera poses using common housing parameters for all cameras. In order not to
optimize the 2D reprojection error in the images (section 3.2), the image points
are back-projected onto the corresponding 3D-ray and then intersected with the
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Fig. 4. Analysis-by-synthesis images. Left: original image. Right: pixel-wise difference
between original image and rendered image, note that the squares of these differences
are summed up in the error function.

checkerboard Xijl (eq. (4) - (7)). This allows to compute a 2D error on the

checkerboard, by using the known corners X̂l, l < L. Then,

Egeometricij =
∑
l<L

||Xijl − X̂l||22 (8)

is the error function that is used with CMA-ES to improve the initial camera
poses, with 6 parameters per pose. Note, that the rotation matrix is represented
by its incremental Euler-angles φx, φy, and φz. During the optimization, the
small changes in the rotation matrix are approximated linearly [27]:

Rij ≈ Rinitij +

⎡
⎣ 0 −φzij φyij

φzij 0 −φxij

−φyij φxij 0

⎤
⎦ (9)

Rij is projected to the closest valid rotation matrix.

4.2 Analysis-by-Synthesis Optimization of Geometry

During the analysis-by-synthesis stage of the algorithm, a 3D model of the
checkerboard is rendered into the camera views, exploiting all image pixels si-
multaneously. The sum of squared differences between rendered and measured
gray level values is the error function to be minimized. This allows to calibrate
the parameters for the camera poses, the interface distance, and the interface
normal directly from all pixels of the image data. In each iteration, a set of
parameters is used to compute the ray for each point xijk , known to lie on the
checkerboard in an image:

(sccijk , r
cc
wijk

) = Ray(xijk , dj ,nπj ), (10)

Using equations (6) and (7), the ray (sccijk, r
cc
wijk

) is first transformed into the
world camera coordinate system and then intersected with the checkerboard
plane (xy-plane of world coordinate system) Xijk = (Xijk, Yijk , 0). Based on the
coordinatesXijk on the plane, the checkerboard gray value Icheckijk

is determined
and after applying αij and βij for gray-level contrast and offset, the rendered
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gray-level value Iren(xijk) = αijIcheckijk
+ βij is used in the error function to be

minimized by CMA-ES:

EAbyS =
∑
i<M

∑
j<N

∑
k<K

||Iren(xijk)− I(xijk)||22. (11)

4.3 Radiometric Calibration

After geometric calibration, camera geometry is utilized to estimate the water
parameters. First, a linear initialization is computed. When considering col-
ors on the checkerboard, one knows that Lobj is either black or white, thus
Lobj = 0 or Lobj = 1 respectively. When averaging the distance between cam-
era and checkerboard for all pixels of the checkerboard z̄ij = 1

K

∑
k<K zijk

and averaging the black and white observations, Ībλij = 1
Kb

∑
k<Kb

Ibλijk
and

Īwλij = 1
Kw

∑
k<Kw

Iwλijk
respectively, a linearly estimated ηλij and B∞λij for

each color channel λ ∈ {R,G,B} can be determined for αλij = 1, βλij = 0:

ηλij = −
ln

(
Īwλij

−Ībλij

αλij
− βλij

)

z̄ij
, B∞λij =

Ībλij − βλij

αλij (1 − e−ηλij
z̄ij )

(12)

The initialization for ηλ and B∞λ is then the mean from all images:

ηλ =
1

MN

∑
j<M

∑
i<N

ηλij , B∞λ =
1

MN

∑
j<M

∑
i<N

B∞λij (13)

Afterward, equation (3) is used in a non-linear Levenberg-Marquardt routine
to optimize ηλ and B∞λ for the whole scene and αijλ and βijλ as additional
parameters for white balance and offset for each image and color channel.

5 Experiments

CMA-ES1 generates individuals of a population during each generation of the
genetic algorithm. The evaluation of all individuals of a generation in CMA-ES
can easily by parallelized using OpenMP2. Note that only parameters for the
initialization, but not for the optimizer were changed throughout our experi-
ments. As a rule of thump, the initial deviations for the parameters were set to
approximately half of the maximal expected distance, e.g. the interface distance
was expected to change up to 20mm from the initialization, while the rotation
angles were expected to change only slightly. The population size γCMA−ES was
set to equal the number of parameters.

1 http://www.lri.fr/~hansen/cmaesintro.html
2 http://openmp.org/wp/

http://www.lri.fr/~hansen/cmaesintro.html
http://openmp.org/wp/
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Fig. 5. Synthetic images, accuracy of the different parameters in presence of growing
noise in images. For rendered image intensity values I ∈ [0, 255], normal distributed
noise was added: IN = I+N(0, σ), with a cut-off for IN < 0 or IN > 255. On the right:
exemplary image cut-outs with zero noise (top) and highest noise level (bottom).
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Fig. 6. Estimation path for an exemplary camera. Left: interface distance error (solid
line) and standard deviation from CMA-ES adaptation (dashed line). Right: cam-
era translation error in z-direction (solid line) and standard deviation from CMA-ES
adaptation (dashed line).

5.1 Synthetic Data

In order to evaluate the accuracy of our method, synthetic checkerboard images
were rendered. The checkerboard square size was 100mm, with 10× 8 squares.
The camera had a resolution of 800× 600 pixels and a focal length of 800 pixels.
The distance between camera and checkerboard was between 1500 and 4000mm.
For 5 noise levels, we rendered 8 sets of images each, automatically detected
checkerboard corners, and plotted the results in fig. 5. Note that the normal
error depicted is the angle between the true normal and the computed normal.
As can be seen, the parameters are computed with high accuracy even though a
considerable amount of noise is added to the images. Since we use CMA-ES for
optimization, it is possible to visualize the adaptation process of the uncertainty
for the individual parameters. Expected are correlations between rotation and
translation of the camera pose, interface distance and camera translation in z-
direction, interface normal in x-direction and camera rotation around the y-axis,



856 A. Jordt-Sedlazeck and R. Koch

Ground
Truth

Result Left Result Right

Perspective Calibration

f 800 1059.39 1055.79

cx, cy 399.5, 299.5 404.47, 305.90 389.21, 300.78

r1, r2,
t1, t2

0, 0, 0, 0 0.382, 0.273,
0.005, 0.003

0.379, 0.318,
0.0002, -0.011

Crig (200, 0, 0)T (201.73,−1.60, 14.62)T

Refractive Calibration

d 10 11.57 10.62

nπ

⎛
⎝

0.0076
0.0044
0.9999

⎞
⎠

⎛
⎝

0.0075
0.0046
0.9999

⎞
⎠

⎛
⎝

0.0074
0.0042
0.9999

⎞
⎠

Crig (200, 0, 0)T (199.89, 0.02,−0.31)T

 100  200  300  400  500  600  700  800 0
 100
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error [in mm]

x [in px]

y [in px]

error [in mm]

Fig. 7. Left: the table shows calibration results for a stereo rig using perspective cali-
bration on underwater images (top 4 rows) and using the proposed method (bottom 3
rows). Right: the resulting calibrations are used to triangulate a plane up to 4000mm
away using the stereo rig (green: proposed method, red: perspective calibration). The
presented errors arise depending on the pixel position in the left image and are due to
error compensation by camera extrinsics during calibration. Note, that the calibration
distance was up to 3500mm.

and interface normal in y-direction and camera rotation around the x-axis. Fig.
6 shows the estimation path of the camera translation in z-direction and the
interface distance using an exemplary camera set-up. As can be seen on the
left, both the interface distance error and the standard deviation decrease with
improving estimation results over the generations. Since interface distance and
z-translation correlate, the uncertainty for the translation in z-direction increases
after approximately 1000 generations.

In addition to evaluating the accuracy of our approach, we compare it to a
perspective calibration based on images captured below water. Calibrating per-
spectively on underwater images causes the focal length and radial distortion
to approximate the refractive effect. Therefore, we get different radial distortion
parameters and the true focal length is multiplied by the index of refraction
of water. In fig. 7 the results of calibrating a stereo rig are shown and for the
perspective calibration the results differ strongly compared to the ground truth
data. In case of radial distortion and focal length, this fits the results of [8] and
[9]. However, in our experiments, part of the error is also absorbed by erroneous
camera poses, especially translation: the average translation error in mm in the
underwater case with the proposed method is (0.25, 0.45, 0.48)T, while the aver-
age translation error in the perspective calibration is (8.08, 10.96, 22.46)T. Figure
7 summarizes calibration results and compares the accuracy of the resulting cali-
brations, when applied to triangulation using the calibrated stereo rig. The novel
camera model computes the distance error-free, while for the perspective camera
model an error of up to 300mm was introduced.
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Table 1. Results of small scale test calibration. Note that the ground truth interface
distance is unknown, but the camera rig was moved backwards in 10mm steps, i. e.
dist2 = dist1 + 10mm and dist3 = dist1 + 20mm. The angle θ is the measured angle
between optical axis and interface normal. The second camera in the rig was fixed
50mm to the right of the first one. In the experiments denoted with ’monocular’ both
cameras of the rig were calibrated individually, in the run denoted with ’stereo’ they
were calibrated as a rig.

dleft in
mm

dright
in mm

θleft in ◦ θright in ◦ translation of slave camera
in mm

dist1, monocular 88.86 89.87 0.59 0.84

dist1, stereo 88.09 87.63 0.86 1.38 C = (49.97,−0.02,−2.73)T

dist2, monocular 99.53 102.96 0.81 0.77

dist2, stereo 103.38 111.18 1.18 1.59 C = (50.79,−0.29,−0.02)T

dist3, monocular 122.56 115.82 1.49 2.56

dist3, stereo 122.40 114.99 0.89 1.71 C = (49.00,−0.22,−4.94)T

Fig. 8. Left: original color image of checkerboard with strong green hue. Right: cor-
rected colors of the same image. Note that only the colors on the checkerboard are can
be corrected because they lie on the xy-plane of the world coordinate system for which
camera-object distance is known after calibration.

5.2 Real Data

The method was tested on two different real cameras. In the first scenario, two
different camera-interface distances were tested in a small-scale camera setting
in the lab. The results are summarized in table 1 and show that the method
works well on these image sets.

In the second scenario, a camera was calibrated based on images captured in
a pool with a strong blue hue (fig. 8, left). The estimated interface distance in
this case was 74mm, the angle θ between optical axis and interface normal was
estimated to be 1.39◦. Figure 8 shows an exemplary input image on the left and
the resulting color corrected image on the right. The colors on the checkerboard
are corrected with the estimated distance between checkerboard and camera.
Near the bottom of the checkerboard, the red channel cannot be corrected due
to the red light being almost completely absorbed by the water.
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6 Conclusion and Future Work

We have presented a novel method for calibrating a camera including a para-
metrization of a flat port underwater housing. The method uses an analysis-
by-synthesis approach in order to become independent from errors in corner
detection for the geometric parameters. In contrast to well-known methods for
perspective calibration, which use local derivative-based methods, our method
applies CMA-ES in the optimization step. Although being time-consuming, this
approach is less prone to get caught in local minima of the error function. This
is of great advantage since even the simpler problem of pose estimation based
on planar calibration targets is known to have ambiguities between rotation and
scale. The resulting parameters describing the camera underwater housing can
be utilized in applications based on the intrinsic geometric information in images
such as SfM, mosaicing, and SLAM. In a second step, parameters for water color
are calibrated and can be used for texture color correction for models or mosaics.

In the future, we plan to utilize the results of our method in order to develop
a SfM system with explicit consideration of refraction. In addition, it would be
interesting to compare a CMA-ES-based perspective calibration algorithm to see
whether it outperforms local derivative optimization schemes like the Levenberg-
Marquardt algorithm. Other than that, we plan to improve the run-time of the
proposed method by using the GPU to render the images of the checkerboard.
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