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Abstract. Wepresent a variational framework to generate super-resolved
novel views from 4D light field data sampled at low resolution, for exam-
ple by a plenoptic camera. In contrast to previous work, we formulate the
problem of view synthesis as a continuous inverse problem, which allows
us to correctly take into account foreshortening effects caused by scene ge-
ometry transformations. High-accuracy depthmaps for the input views are
locally estimated using epipolar plane image analysis, which yields float-
ing point depth precision without the need for expensive matching cost
minimization. The disparity maps are further improved by increasing an-
gular resolution with synthesized intermediate views. Minimization of the
super-resolution model energy is performed with state of the art convex
optimization algorithms within seconds.

1 Introduction

In constrast to a finite collection of 2D images, the complete 4D light field of a
scene is defined on a continuous domain of camera view points. The continuous
disparity space admits non-traditional approaches to the multiview stereo prob-
lem that do not rely on feature matching [1,2]. However, in practice, it used to
be difficult to achieve a dense enough sampling of the full light field. A few years
ago, this was usually performed with expensive custom setups like camera ar-
rays [3] or gantry constructions consisting of a moving camera [4], which can only
capture static scenes. Nowadays, plenoptic cameras are commercially available,
which makes a dense sampling even of light field videos feasible for real-world
applications. Naturally, this creates high demand for robust and efficient light
field analysis algorithms.

However, plenoptic cameras usually have to deal with a trade-off between
spatial and angular resolution. Since the total sensor resolution is limited, one
can either opt for a dense sampling in the spatial (image) domain with sparse
sampling in the angular (view point) domain [5], or vice versa [6,7,8]. Recent
commercial cameras tend to favor a small number of view points, for example
the Raytrix [5] captures a collection of 9 × 9 views simultaneously. Increasing
angular resolution is therefore a paramount goal if one wants to make efficient
use of plenoptic cameras. It is equivalent to the synthesis of novel views from
new viewpoints, which has also been a prominent research topic in the computer
graphics community [9,4]. In this work, we will unify it with state-of-the-art
spatial super-resolution research in computer vision [10,11].
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Input view (1/24) Estimated disparity Super-res. novel view

Fig. 1. Our variational framework allows the synthesis of super-resolved views of a
light field from arbitrary view points. The novel view above was generated from 24 input
views with a resolution of 768×768 pixels at 3×3 super-resolution, yielding an output
resolution of 2304 × 2304.

Related Work. The plenoptic function is defined on a seven-dimensional space
and describes the entire information about light emitted by a scene, storing
an intensity value for every 3D point, direction, wavelength and time [12]. A
reduction to a plane and directional information leads to the four-dimensional
Lumigraph [13,4], which is usually expressed in the two-plane parametrization
we also adopt in this work. Any collection of images of a scene can be interpreted
as a sparse sampling of the plenoptic function. Consequently, image-based ren-
dering approaches [14] treat the creation of novel views as a resampling problem,
circumventing the need for any explicit geometry reconstruction [9,4,15]. How-
ever, this approach ignores occlusion effects, and therefore is only really suitable
for synthesis of views reasonably close to the original ones.

Thus, it quickly became clear that one faces a trade-off, and interpolation of
novel views in sufficient enough quality requires either an unreasonably dense
sampling or knowledge about scene geometry [16]. A different line of approaches
to light field rendering therefore tries to infer at least some geometric knowledge
about the scene. They usually rely on image registration, for example via robust
feature detecting and tracking [17], or view-dependent depth map estimation
based on color consistency [18].

The creation of super-resolved images requires subpixel-accurate registration of
the input images. Approaches which are based on pure 2D image registration [10]
are unsuitable for the genereation of novel views, since a reference image for com-
puting the motion is not available yet. Super-resolved depth maps and images
are inferred in [7] with a discrete super-resolution model tailored to a particular
plenoptic camera. A full geometric model with a super-resolved texture map is es-
timated in [11] for scenes captured with a surround camera setup. Our approach is
mathematically closely related to the latter, since [11] is also based on continuous
geometry which leads to correct point-wise weighting of the energy gradient con-
tributions. However, we do not perform expensive computation of a global model
and texture atlas, but instead compute the target view directly.

Contributions. This paper simultaneously addresses the problems of spatial
and angular super-resolution. We extend the mathematical framework of



610 S. Wanner and B. Goldluecke

variational light field analysis [2], and propose a variational inverse problem
whose solution is the synthesized super-resolved novel view. Since we work in
a continuous setting, we can correctly take into account foreshortening effects
caused by the scene geometry. The method requires an initial geometry estimate
with subpixel accuracy. Recent algorithms tailored to light field data [2] can
achive this, and allow to synthesize high-quality novel views. Source code for the
method as well as our data sets are available online1.

2 Super-Resolution View Synthesis Model

In this section, we propose a variational model for the synthesis of super-resolved
novel views, to our knowledge the first of this kind which works directly in view
space. Since the model is continuous, we will be able to derive Euler-Lagrange
equations which correctly take into account foreshortening effects of the views
caused by variations in the scene geometry. This makes the model essentially
parameter-free. The framework is in the spirit of [11], which computes super-
resolved textures for a 3D model from multiple views, and shares the same
favourable properties. However, it has substantial differences, since we do not
require a complete 3D geometry reconstruction and costly computation of a
texture atlas. Instead, we only make use of depth maps on the input images,
and model the super-resolved novel view directly.

The following mathematical framework is fully general, and formulated for
views with arbitrary projections. However, an implementation in full generality
would be highly difficult to achieve. We therefore specialize to the scenario of
a 4D light field in the subsequent section, and leave a generalization of the
implementation for future work.

For the remainder of the section, assume we have images vi : Ωi → R of a scene
available, which are obtained by projections πi : R3 → Ωi. Each pixel of each
image stores the integrated intensities from a collection of rays from the scene.
This subsampling process is modeled by a blur kernel b for functions on Ωi, and
essentially characterizes the point spread function for the corresponding sensor
element. It can be measured for a specific imaging system [19]. In general, the
kernel may depend on the view and even on the specific location in the images.
We omit the dependency here for simplicity of notation.

The goal is to synthesize a view u : Γ → R of the light field from a novel view
point, represented by a camera projection π : R3 → Γ , where Γ is the image
plane of the novel view. The basic idea of super-resolution is to define a physical
model for how the subsampled images vi can be explained using high-resolution
information in u, and then solve the resulting system of equations for u. This
inverse problem is ill-posed, and is thus reformulated as an energy minimization
problem with a suitable prior or regularizer on u.

Image Formation and Model Energy. In order to formulate the transfer of
information from u to vi correctly, we require geometry information [16]. Thus,

1 http://hci.iwr.uni-heidelberg.de/HCI/Research/LightField/

http://hci.iwr.uni-heidelberg.de/HCI/Research/LightField/
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Fig. 2. Transfer map τi from an input image plane Ωi to the image plane Γ of the
novel view point. The scene surface Σ can be inferred from the depth map on Ωi. Note
that not all points x ∈ Ωi are visible in Γ due to occlusion, which is described by the
binary mask mi on Ωi. Above, mi(x) = 1 while mi(x

′) = 0.

we assume we know (previously estimated) depth maps di for the input views.
A point x ∈ Ωi is then in one-to-one correspondence to a point P which lies on
the scene surface Σ ∈ R

3. The color of the scene point can be recovered from u
via u ◦ π(P ), provided that x is not occluded by other scene points, see figure 2.

The process explained above induces a backwards warp map τi : Ωi → Γ
which tells us where to look on Γ for the color of a point, as well as a binary
occlusion mask mi : Ωi → {0, 1} which takes the value 1 if and only if a point in
Ωi is also visible in Γ . Both maps only depend on the scene surface geometry as
seen from vi, i.e. the depth map di. The different terms and mappings appearing
above and in the following are visualized for an example light field in figure 3.

Having computed the warp map, one can formulate a model of how the values
of vi within the mask can be computed, given a high-resolution image u. Using
the downsampling kernel, we obtain vi = b∗(u◦τi) on the subset ofΩi wheremi =
1, which consists of all points in vi which are also visible in u. Since this equality
will not be satisfied exactly due to noise or inaccuracies in the depth map, we
instead propose to minimize the energy

E(u) = σ2

∫
Γ

|Du|+
n∑

i=1

1

2

∫
Ωi

mi(b ∗ (u ◦ τi)− vi)
2 dx

︸ ︷︷ ︸
=:Ei

data(u)

. (1)

which is the MAP estimate under the assumption of Gaussian noise with stan-
dard deviation σ on the input images. It resembles a classical super-resolution
model [19], which is made slightly more complex by the inclusion of the warp
maps and masks.

In the energy (1), the total variation acts as a regularizer or objective prior
on u. Its main tasks are to eliminate outliers and enforce a reasonable inpainting
of regions for which no information is available, i.e. regions which are not visible
in any of the input views. It could be replaced by a more sophisticated prior for
natural images, however, the total variation leads to a convex model which can
be very efficiently minimized.
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Fig. 3. Illustration of the terms in the super-resolution energy. The figure shows the
ground truth depth map for a single input view and the resulting mappings for forward-
and backward warps as well as the visibility mask mi. White pixels in the mask denote
points in Ωi which are visible in Γ as well.

Functional Derivative. The functional derivative for the inverse problem
above is required in order to find solutions. It is well-known in principle, but
made slightly more complicated by the different domains of the integrals. Note
that τi is one-to-one when restricted to the visible region Vi := {mi = 1}, thus
we can compute an inverse forward warp map βi := (τi|Vi)

−1, which we can
use to transform the data term integral back to the domain Γ , see figure 3. We
obtain for the derivative of a single term of the sum in (1)

dEi
data(u) = |detDβi|

(
mib̄ ∗ (b ∗ (u ◦ τi)− vi)

) ◦ βi (2)

The determinant is introduced by the variable substitution of the integral during
the transformation. A more detailed derivation for a structurally equivalent case
can be found in [11].

The term |detDβi| in equation (2) introduces a pointwise weight for the con-
tribution of each image to the gradient descent. However, βi depends on the
depth map on Γ , which needs to be inferred and is not readily available. Fur-
thermore, for efficiency it needs to be pre-computed, and storage would require
another high-resolution floating point matrix per view. Memory is a bottleneck
in our method, and we need to avoid this. For this reason, it is much more ef-
ficient to transform the weight to Ωi and multiply it with mi to create a single
weighted mask. Note that

|detDβi| =
∣∣detDτ−1

i

∣∣ = |detDτi|−1 ◦ βi. (3)
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Thus, we obtain a simplified expression for the functional derivative,

dEi
data(u) =

(
m̃i b̄ ∗ (b ∗ (u ◦ τi)− vi)

) ◦ βi (4)

with m̃i := mi |det(Dτi)|−1
. An example weighted mask is visualized in figure 3.

3 Specialization to 4D Light Fields

The model introduced in the previous section is hard to implement efficiently
in fully general form. This paper, however, focuses on the setting of a 4D light
field, where we can make a number of significiant simplifications. The main rea-
son is that the warp maps between the views are given by parallel translations
in the direction of the view point change. The amount of translation is propor-
tional to the disparity of a pixel, which is in one-to-one correspondence to the
depth.

4D Light Field Structure, Views and Depth Estimation. A 4D light field
or Lumigraph is the collection of all pinhole views whose focal points lie in a
plane Π which is parallel to a common image plane Ω. We write it as a map

L : Π ×Ω → R, (c, x) �→ L(c, x), (5)

which is an assignment of an intensity value to each ray Rc,x emanating from the
focal point c ∈ Π and passing through x ∈ Ω. In reality, we will not know the
intensity value for every possible ray, but have a more or less sparse sampling
available. In particular, we have captured the light field only for a finite collection
of vantage points ci ∈ Π, 1 ≤ i ≤ n, which yield the input views vi = L(ci, ·) to
our super-resolution algorithm with projections πi corresponding to a projection
through the center ci.

The 3D structure of a scene is strongly related to the internal structure of a
light field, which can be exploited for depth reconstruction. This becomes obvi-
ous when considering epipolar plane images (EPIs). An epipolar plane image is
a 2D cut along a line in Ω through the full stack of views obtained by moving
the camera along a direction in Π [1]. Points in space project onto a line in
an EPI, yielding a characteristic structure which can be observed in figure 12.
Notably, the slope of the line is inversely proportional to the distance of the
corresponding point, and called its disparity. In [2], a method was presented
how to robustly and efficiently obtain dense disparity maps by analyzing the
structure tensor of the EPI. As we will see later, disparity maps obtained by this
method have subpixel accuracy and are thus suitable to obtain super-resolution.
However, a look at figure 12 already suggests that the estimate will be more
accurate when the angular sampling of the light field is more dense. An idea
is therefore to increase angular resolution and improve the depth estimate by
synthesizing intermediate views. In the experimental section, we will demon-
strate that this is actually a viable strategy, although it looks circular at first
glance.
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x+ di(x)Δc = y + di(y)Δc

Ω

cΔcci

xy

⇔ Δcdi(x)−di(y)
x−y

= −1

(a) Light field geometry (b) Weighted mask m̃i

Fig. 4. (a) The slope of the solid blue line depends on the disparity gradient in the
view vi. If Δc · ∇di = −1, then the line is projected onto a single point in the novel
view u. (b) Visualization of the weighted mask m̃i obtained for the view reconstruction
in figure 3.

View Synthesis in the Light Field Plane. The warp maps required for view
synthesis become particularly simple when the target image plane Γ lies in the
common image plane Ω of the light field, and π resembles the corresponding
light field projection through a focal point c ∈ Π . In this case, τi is simply given
by a translation proportional to the disparity,

τi(x) = x+ di(x)(c− ci), (6)

see figure 4. Thus, one can compute the weight in equation (4) to be

|detDτi|−1 = |1 +∇di · (c− ci)|−1 (7)

There are a few observations to make about this weight. Disparity gradients
which are not aligned with the view translation Δc = c− ci do not influence it,
which makes sense since it does not change the angle under which the patch is
viewed. Disparity gradients which are aligned with Δc and tend to infinity lead
to a zero weight, which also makes sense since they lead to a large distortion of
the patch in the input view and thus unreliable information.

A very interesting result is where the location of maximum weight lies. The
weights become larger when Δc · ∇di approaches −1. An interpretation can be
found in figure 4. If Δc ·∇di gets closer to −1, then more information from Ωi is
being condensed onto Γ , which means that it becomes more reliable and should
be assigned more weight. The extreme case is a line segment with a disparity
gradient such that Δc ·∇di = −1, which is projected onto a single point in Γ . In
this situation, the weight becomes singular. This does not pose a problem: From
a theoretical point of view, the set of singular points is a null set according to
the theorem of Sard, and in practice, it means that we have occlusion and the
mask mi is zero anyway.

Note that formula (7) is highly non-intuitive, but the correct one to use
when geometry is taken into account. We have not seen anything similar be-
ing used in previous work. Instead, weighting factors for view synthesis are of-
ten imposed according to measures based on distance to the interpolated rays
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or matching similarity scores, which are certainly working, but also somewhat
heuristic strategies [4,18,15,10].

4 Discretization and Optimization

Writing a correct implementation of a super-resolution algorithm is a highly
complex task which requires much attention to detail. We will therefore provide
a clean implementation of our method on our web page after publication. In this
section, we sketch the necessary steps and clarify some of the fine points.

Grids and Transformations. The input views are given on low-resolution
grids with P pixels in the domains Ωi, and are represented as vectors vi ∈ R

P

of grayscale values. Using bilinear filtering, we first upsample them to a high-
resolution grid of M = P ·K pixels, where K is the desired magnification factor.
We then compute disparity maps di ∈ R

M , using the local structure tensor
analysis described in [2]. Note that this step is quite fast and performs at near
real-time frame rates.

The depth maps induce the warp maps τi : Ωi → Γ , thus we can use them to
look up values on Γ with bilinear interpolation and compute the backwards warp
u ◦ τi. In the discrete setting, we write the backwards warp as a matrix multipli-
cation Tiu with a sparse matrix Ti ∈ R

M×M , which has at most four non-zero
entries per row. During computation of Ti, we can set up the weighted masks m̃i

and a lookup table for the backwards warp in form of a sparse matrix Wi such
that Wivi = vi ◦ βi. This pre-computation step is currently relatively expensive
since we have not yet been able to fully parallelize it. It takes about half a second
per input view at resolution 768× 768.

Subsampling and Functional Derivative. The subsampling kernel b induces
a linear map B : RM → R

P , which maps a high-resolution image to the sub-
sampled low-resolution one. It is given by a sparse matrix, where each row has
at most K non-zero entries. Note that B must take into account visibility, i.e.
filter only over pixels x for which mi(x) = 1. Putting all this together, we can
now compute the functional derivative of the data term on the high-resolution
grid Γ via the discretized form of equation (4)

dEi
data(u) = Wi

[
m̃iB

T (BTiu− vi)
]
. (8)

Optimization of the Functional. The energy (1) is convex, since the integral
transformation preserves convexity. The derivative of the data term is Lipschitz
continuous, from (8), we see that a Lipschitz constant for the discretized form for
each term is given by the operator norm ofWim̃iB

TBTi. It is hard to compute in
practice, so we determined a conservative upper bound experimentally. All ingre-
dients are thus available to minimize the energy via the fast iterative shrinkage
and thresholding algorithm (FISTA) found in [20], see figure 5. Convergence
takes about 15 seconds on a recent GPU, at target resolution 2304× 2304 and
input resolution 768× 768 with 24 views. Most of the time is spent computing
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Initialize

fields on Γ :

functions u0 = 0, ū0 = 0

a vector field ζ0 = 0

real numbers:

step size τ =
1

8

Lipschitz const. L = 5n

overrelaxation factor t0 = 1

Iterate

gn = ūn − 1

L

n∑

i=1

dEi
data(u), un+1 = un

repeat k times

ζn+1 = Πσ2E(ζn + τ∇un+1)

un+1 = gn +
1

L
div(ζn+1)

tn+1 = (1 +
√

1 + 4t2n)/2

ūn+1 = un +
tn − 1

tn+1
(un+1 − un)

Fig. 5. Super-resolution algorithm for minimization of energy (1). The above method
is a specialization of FISTA [20], where the inner loop computes a proximation for the
total variation using the Bermùdez-Moreno algorithm [21]. The operator Πσ2E denotes
a point-wise projection onto the ball of radius σ2.

the gradient terms, in particular the warping. Computation time scales roughly
linearly with the number of input views and pixels.

5 Experiments

View Interpolation and Super-Resolution. In a first set of experiments, we
show the quality of view interpolation and super-resolution, both with ground
truth as well as estimated depth. In table 6, we synthesize the center view of a
light field with our algorithm using the remaining views as input, and compare
the result to the actual view. We compute results both with ground truth dispar-
ities to show the maximum theoretical performance of the algorithm, as well as
for the usual real-world case that depth needs to be estimated. This estimation
is performed using the local method in [2].

Conehead Buddha Mona
Views 1x1 3x3 IP 1x1 3x3 IP 1x1 3x3 IP
5 × 5 31.59 29.30 26.50 32.24 28.91 26.54 30.13 28.29 26.42

G
T9 × 9 31.58 29.43 26.45 32.20 29.05 26.45 30.04 28.29 26.32

17 × 17 31.19 30.38 26.02 31.75 30.19 27.17 30.17 28.87 26.49

5 × 5 31.05 29.30 25.77 27.96 28.91 24.34 26.44 28.29 23.84

E
D9 × 9 31.38 29.43 26.23 30.68 29.05 27.70 28.87 28.29 25.13

17 × 17 31.49 30.86 24.27 31.42 29.54 26.81 29.49 28.30 25.80

Fig. 6. Reconstruction error for the data sets obtained with a ray-tracer. The table
shows the PSNR of the center view without super-resolution, at super-resolution mag-
nification 3× 3, and for bilinear interpolation to 3× 3 resolution (IP) as a comparison.
The set of experiments is run with both ground truth (GT) and estimated disparities
(ED). The estimation error for the disparity map can be found in figure 7. Input image
resolution is 384× 384.
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Views Cone Buddha Mona

5× 5 4.53 0.88 2.13
9× 9 0.066 0.08 0.19

17× 17 0.014 0.014 0.04

Disparity MSE

Fig. 7. Disparity reconstruction error. The table shows the mean squared error for
the depth maps reconstructed with [2] at different angular resolutions. We see that
depth maps clearly get better the higher the angular resolution is. The images show
the distribution of the error, which is concentrated around depth discontinuities. Note
that these regions do not influence the final result by much, since the weight of their
contribution is small, see figure 4(b).

In order to test the quality of super-resolution, we compute the 3 × 3 super-
resolved center view and compare with ground truth. For reference, we also
compare the result of a bilinear interpolation (IP) of the center view synthesized
in the first experiment. While the reconstruction with ground truth disparities is
almost perfect, we can clearly see that in the case of estimated depth, the result
strongly improves with higher angular resolution due to better depth estimates,
figure 7. Super-resolution is definitely superior to simple bilinear upsampling.
This also emphasizes the sub-pixel accuracy of the disparity maps, since without

Input view (1/24) Estimated disparity Super-resolved novel view

Fig. 8. Super-resolution results for the data sets Conehead and Mona. Computed from
24 input views with a resolution of 768× 768 pixels at 3× 3 super-resolution, yielding
an output resolution of 2304 × 2304. See figure 9 for closeups.
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(a) Conehead (b) Buddha (c) Mona

Fig. 9. Closeups of the results in figure 8 for the light fields generated with a ray tracer.
From top to bottom: low-resolution center view (not used for reconstruction), high res-
olution center view obtained by bilinear interpolation of a low-resolution reconstruction
from 24 other views, super-resolved reconstruction. Note the increased sharpness and
details of the super-resolved result.

Views Cone Buddha Mona

input 5× 5 4.534 0.883 2.125
SR 9× 9 1.084 0.559 1.058

input 9× 9 0.066 0.080 0.192
SR 17× 17 0.044 0.066 0.105

Disparity MSE

Fig. 10. Iterative disparity improvement. With initial depth maps for the original
angular sampling of the input data set, one can compute intermediate views in order
to increase the resolution of the epipolar plane images, see figure 12. This in turn leads
to an improved disparity estimate when using the algorithm in [2]. The table shows
mean squared error for the depth maps at original and super-resolved (SR) angular
resolution, the images illustrate the distribution of the depth error before and after
super-resolution and the final depth map.

Method Demo Motor

1× 1 36.91 35.36
3× 3 30.82 31.72
IP 23.89 22.84

Reconstruction PSNR

Fig. 11. Reconstruction error for light fields captured with the Raytrix plenoptic cam-
era. The table on the left shows PSNR for the reconstructed input view at original
resolution as well as 3×3 super-resolution and 3×3 interpolation (IP) for comparison.
Since no ground truth for the scene is available, the input views were downsampled to
lower resolution before performing super-resolution and compared against the original
view. The images on the right show the estimated disparity maps for the two scenes.
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5× 5 input views super-resolved to 9× 9 super-resolved to 17× 17

Fig. 12. Upsampling of epipolar plane images (EPIs). The left image shows the five
layers of an epipolar plane image of the input data set with 5 × 5 views. We gener-
ate intermediate views using our method to achieve angular super-resolution. One can
observe the high quality and accurate occlusion boundaries of the resulting view inter-
polation. Indeed, they are accurate enough such that using the upsampled EPIs leads
to a further improvement in depth estimation accuracy, see figure 10.

(a) Demo (b) Motor

Fig. 13. Super-resolution view synthesis using light fields from a plenoptic camera.
Scenes were recorded with a Raytrix camera at a resolution of 962 × 628 and super-
resolved by a factor of 3 × 3. The light field contains 9 × 9 views. Numerical quality
of the estimate is computed in figure 11. The top image shows the full novel view,
in the bottom rows can bee seen (from top to bottom): closeups of a low-resolution
input view, the high-resolution view obtained by bilinear interpolation, and the super-
resolved result. One can clearly make out additional detail, for example the diagonal
stripes in the Euro note, which were not visible before.
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accurate matching, super-resolution would not be possible. Figures 1 and 8 show
images from the input light fields, estimated depth maps and super-resolved novel
views. Note that due to file size limit, the PDF resolution is not high enough
to observe the increased details of the super-resolved results in these figures,
instead see figure 9 for closeups.

Figures 11 and 13 show the results of the same set of experiments (without
ground truth data, which is not available) for two real-world scenes captured
with the Raytrix plenoptic camera. We can see that the algorithm allows to
accurately reconstruct both subpixel disparity as well as a high-quality super-
resolved intermediate view.

Depth Refinement. In figure 7, the accuracy of the disparity maps is shown
numerically in a comparison to the ground truth. They clearly become better
with higher angular resolution. Consequently, we apply the idea of re-computing
the disparity maps with synthesized intermediate views. We first synthesize novel
views to increase angular resolution by a factor of 2 and 4. Figure 12 shows
resulting epipolar plane images, which can be seen to be of high quality with
accurate occlusion boundaries. Nevertheless, it is highly interesting that the
quality of the disparity map increases significantly when recomputed with the
super-resolved light field, figure 10. This is a striking result, since one would
expect that the intermediate views reflect the error in the original disparity
maps. However, they actually provide more accuracy than a single disparity
map, since they represent a consensus of all input views.

6 Conclusions

We substantially extended the mathematical framework for variational light field
analysis by introducing a variational model for super-resolution view synthesis.
Compared to previous work on novel view generation, this allows us to analyti-
cally derive weighting factors for the contributions of the input views caused by
foreshortening effects due to scene geometry. Experiments on synthetic ground
truth as well as real-world images from a recent plenoptic camera give numerical
evidence for the high quality of the method. In conjunction with a non-classical
approach to disparity estimation which exploits the continuous structure of the
disparity space [2], we compute super-resolved disparity maps at sub-pixel pre-
cision even for complex light fields with highly specular objects. Notably, the
quality of view synthesis is good enough to further improve the disparity esti-
mate, which improves with higher angular resolution.
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