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Abstract. Much effort has been directed at algorithms for obtaining
the highest probability (MAP) configuration in probabilistic (random
field) models. In many situations, one could benefit from additional high-
probability solutions. Current methods for computing the M most prob-
able configurations produce solutions that tend to be very similar to the
MAP solution and each other. This is often an undesirable property. In
this paper we propose an algorithm for the Diverse M-Best problem,
which involves finding a diverse set of highly probable solutions under
a discrete probabilistic model. Given a dissimilarity function measuring
closeness of two solutions, our formulation involves maximizing a linear
combination of the probability and dissimilarity to previous solutions.
Our formulation generalizes the M-Best MAP problem and we show that
for certain families of dissimilarity functions we can guarantee that these
solutions can be found as easily as the MAP solution.

1 Introduction

The introduction of sophisticated discrete optimization tools for inference in
Markov Random Fields (MRFs) over the last two decades has allowed optimal
or provably approximate solutions to certain vision problems previously deemed
intractable. For instance, using max-flow/min-cut methods [7,[13], one can find
the globally optimal solution for a (submodular) foreground-background seg-
mentation problem on a 2 Megapixel image within seconds, effectively searching
22,000,000 assible segmentations.

However, optimization error is only one component of generalization error of
a learning algorithm [4]. Even when exact inference in MRFs is efficient, the
maximum a posteriori (MAP) solution could be far from the ground truth. The
source of this discrepancy may be approzimation error, due to the limitations
of the model class (e.g. pairwise binary submodular MRFs), or estimation error
i.e. error made because parameters are learnt from a finite training set.

Indeed, recent empirical studies [20,82] have repeatedly found that MAP
solutions of existing models are of much poorer quality than the ground-truth
on vision problems like segmentation, stereo, optical flow, denoising, etc. Equiv-
alently, the ground-truth has lower probability than the MAP solution under
existing models. This discrepancy has been the driving force behind the search
for more accurate (higher-order) models; [16,23|27] are just a few examples.
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Fig. 1. Examples of category-level segmentation results on test images from VOC 2010.
For each image, “mode” above is the best of 10 solutions obtained with DivMBEST.

MAP 2"t MAP 2™ Mode

Fig. 2. (Left) Interactive segmentation setup; (Right) Pose tracking. “Mode” above
refers to the solution obtained with DivMBEST.

In addition to this quest for better models, we believe that another way to
mitigate this problem is to look beyond obtaining a single MAP solution — to
look for a diverse set of highly probable solutions instead from our existing mod-
els. Even if the MAP solution alone is of poor quality, a diverse set of highly
probably hypotheses might still enable accurate predictions. Note that in con-
trast to the M-Best MAP problem [0,22,[38] that involves finding the top M
most probable solutions under a probabilistic model, our approach emphasizes
diversity. We seek to produce highly probable solutions that are qualitatively
different from the MAP and from each other. This is an important distinction
because the literal definition of M-best MAP is not expected to work well in
practice. In a large state-space problem (e.g. 22:000:000) any reasonable setting
of M (10 — 50) would return solutions nearly identical to the MAP. Ideally, we
would like to find the modes of the distribution learnt by our probabilistic model.
Figs. [0l @ show examples of these diverse solutions extracted for different tasks.

Overview. In this paper, we introduce the Diverse M-Best problem, which
involves finding a diverse set of highly probable solutions under a discrete prob-
abilistic model. Our formulation assumes access to a dissimilarity function A(,-)
measuring the difference between two solutions. We present an integer pro-
gramming formulation for the Diverse M-Best problem, study its Lagrangian
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relaxation. We show that this relaxation has an interesting interpretation as
the A-augmented energy minimization problem, which minimizes a linear com-
bination of the energy and similarity to previous solutions, thereby producing
solutions with low energy and high diversity. For simplicity we sometimes will
refer to these solutions as modes, although they are not guaranteed to be actual
modes of the Gibbs distribution.

Contributions. Our principal contribution is the first principled optimization
formulation for extracting diverse high-probability solutions in MRFs. It includes
the familiar M-Best MAP problem as a special case. Perhaps most crucial for a
practitioner, we show that for certain families of A-functions (that we discuss in
Section [, the A-augmented energy minimization problem is as easily solvable
as the original MAP problem. Thus if exact or provably approximate algorithms
exist for finding the MAP solution in a model, (e.g. graph-cuts [7,[13]), those
same algorithms are applicable for finding Diverse M-Best solutions.

Applications. Our algorithm could be applicable whenever multiple hypotheses
can be effectively used to infer a solution to the problem. In this paper, we show
applications on three vision tasks: (i) an interactive application (object-cutout)
where multiple diverse cutouts are presented to a user to minimize interaction
time (ii) category-level image segmentation, where multiple highly-probable so-
lutions could be ranked using a secondary mechanism [19] not amenable to in-
ference, and finally (iii) human pose tracking in video, where multiple solutions
per frame can be used for pose-tracking via a Viterbi-like decoding scheme that
exploits temporal context [25]. In all three of these tasks we demonstrate that
Diverse M-Best solutions can be used to significantly improve performance.

2 Related Work

M-Best MAP. Most directly relevant to our work is literature on the M-Best
MAP problem. Lawler [I§] proposed a general algorithm to compute the top M
solutions for a large family of discrete optimization problems, and the ideas used
in Lawler’s algorithm form the basis of most algorithms for the M-Best MAP
problem. The first family of algorithms for M-Best MAP [22[30] were junction-
tree based exact algorithms, thus feasible only for low-treewidth graphs. Dechter
and colleagues [8,21] have recently provided dynamic-programming algorithms
for M-Best MAP, but these are exponential in treewidth as well. Yanover and
Weiss [38] proposed an algorithm that requires access only to max-marginals.
Thus, for certain classes of MRFs that allow efficient exact computation of
max-marginals, e.g. binary pairwise supermodular MRFs [12], M-Best solu-
tions can be found for arbitrary treewidth graphs. Moreover, approzximate M-
Best solutions may be found by approximating the max-marginal computation,
e.g. via max-product BP. More recently, Fromer and Globerson [9] provided
a Linear Programming (LP) view of the M-Best MAP problem by studying
the assignment-excluding marginal polytope. We show in Section [ that M-best
MAP is a special case of our formulation, with a particular kind of A(-, ).
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Sampling Based Approaches. A common alternative is to use sampling [T120],
35] to produce multiple solutions, which may then be refined or checked for di-
versity. Such approaches typically exhibit long wait times to transition from one
mode to another. Moreover, in contrast to our work, there is no direct mechanism
to require the multiple solutions (samples) obtained in this way to be diverse.
An interesting approach by Papandreou and Yuille [24] shows that approximate
samples may be drawn from the Gibbs distribution by injecting a certain noise
into the parameters and solving for MAP on these perturbed parameters. Our
approach can be seen as a deterministic counterpart to their stochastic pertur-
bation — we always perturb the parameters in a fixed way, and the perturbation
does not produce iid samples, rather Diverse M-Best solutions.

Diverse Solutions. The need for diverse solutions arises in a number of prob-
lems in computer vision and more broadly in machine learning. Yu and Joachims
[39] proposed to learn a predictor that selects a topic-diverse subset of docu-
ments. Diversity is also a key goal in the context of non-maximal suppression
for object detection [2,[3]. Recently, Park and Ramanan [25] applied the max-
marginal algorithm of [38] to decode multiple solutions from a deformable parts
model, with an added constraint forcing at least one non-overlapping part. Their
approach is also contained in our formulation as a special case (see Section H).

3 Preliminaries: MAP Inference in MRFs

Notation. For any positive integer n, let [n] be shorthand for the set {1,2,...,n}.
We consider a set of discrete random variables x = {z; | ¢ € [n]}, each taking
value in a finite label set, x; € X;. For a set A C [n], we use x4 to denote the
tuple {x; | i € A}, and X4 to be the cartesian product of the individual label
spaces X;c4X;. For ease of notation, we use z;; as a shorthand for z; ;.

MAP. Let G = (V,E) be a graph defined over these variables, i.e. V = [n], £ C

(5), and let 04 : X4 — R, (VA € VUE) be functions defining the energy
at each node and edge for the labeling of variables in scope. The goal of MAP
inference is to find the labeling x of the variables that minimizes this real-valued
energy function:

Jnin > Oa(ra) = min ‘ Oi(w:) + Z 0:5 (@i, 5)- (1)
AeVUE i€V (i,5)€€

The techniques proposed in this paper are naturally applicable to higher-order
MRFs. However, to simplify the exposition we only consider pairwise energies.

MAP Integer Program. MAP inference is typically set up as an integer pro-
gramming problem over boolean variables. For each node and edge A € VUZE,
let pa = {pa(s) | s € Xa, pa(s) € {0,1}}, be a vector of indicator variables
encoding all possible configurations of z 4. If 14(s) is set to 1, this implies that
x4 takes label s. Moreover, let 84 = {04(s) | s € X4} be a vector holding
energies for all possible configurations of z4, and p = {pua | A € VUE} be a
vector holding the entire configuration. Using this notation, the MAP inference
integer program can be written as:
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min Y 0 pit+ Y Oy (2a)
Baobag ey (i,5)€E
st Y pis) =1 Viey (2b)
seX;
> pii(s,t) = pi(t), > pas(s,t) = pa(s) i, jt €& (2c)
seX; teX;
/’Li(s)nu‘ij (S,t) € {07 1} (2d)

Here (2h)and 2d) enforce that exactly one label is assigned to a variable, and

that assignments are consistent across edges. To be concise, we will use L(G) to

denote the set of p that satisfy these two constraints. Thus, the above problem
can be written concisely as: min Op-y.

@ Y HEL(G), pa(s)€{0,1} Z H

AeVueE
Problem (@) is known to be NP-hard in general. A number of techniques solve

a Linear Programming (LP) relaxation of this problem [36], which is given by
relaxing the boolean constraints (2d)) to the unit interval, i.e. y1;(s), pij (s, ¢) > 0.

4 Diverse M-Best: Formulation

We now describe our proposed Diverse M-Best formulation. Recall that the goal
is to produce a diverse set of low-energy solutions. We approach this problem
with a greedy algorithm, where the next solution is defined as the lowest en-
ergy state with at least some minimum dissimilarity from the previously chosen
solutions. To do so, we assume access to a dissimilarity function A(u!, u?) be-
tween solutions. Let u™ denote the m‘"-best mode. Thus p! is the MAP, p? is
the second-best mode and so onl] Let us first search for the second mode. We
propose the following straightforward yet fairly general formulation:

2= argmin Z 04 pa (3a)
HEL(G), pa(s)€{0,1}  4op0e
st Al p') > k. (3b)

We refer to the above formulation as Div2BEST(A, k). Note that it is
parametrized by the two design choices A and k (both of which we will discuss in
detail). Intuitively, we can see that the above formulation searches for the lowest
energy solution that is at least k-units away from the MAP solution under A(,-).
The extension from Diw2BEST(A, k) to DivMBEST (A, k) is fairly simple: we
search for the lowest energy solution at least k,,-units away from each of the
previously found (M-1) solutions, i.e. A(p, ™) > kpy, VYm € {1,...,M — 1},
where k = {k,, | m € [M — 1]} is the vector of different distance thresholds.
This formulation is general enough to contain existing ones as special cases:

Special Case: M-Best MAP is obtained when A is a 0 — 1 dissimilarity (i.e.
A(p, pt) = [0 # p']), where [[-] is an indicator function), and k = 1. Thus (BH)
simply forces the next best solution to not be identical to MAP. Other choices
of A(-,-) are also possible to express the M-Best MAP problem.

! Whenever we refer to MAP we mean exact or approximate MAP, as produced by
the inference engine for the model at hand.



6 D. Batra et al.

Special Case: N-Best Maximal Decoding of Park and Ramanan [25]
corresponds to A, pt) = max;ey A;(pq, p}) and k = 1. Intuitively, their ap-
proach defines local dissimilarity functions at each node, and forces at least one
node label to be non-identical (under A;) to the MAP label at that node.

5 Diverse M-Best: Lagrangian Relaxation

In general, DivMBEST (A, k) is at least as hard to solve the MAP inference
problem, which is NP-hard. Moreover, the dissimilarity constraints obfuscate
some of the structure in the problem typically exploited by MAP inference algo-
rithms. Thus we study the Lagrangian relaxation of DivMBEST (A, k), formed
by dualizing the dissimilarity constraints A(u, u™) > k:

M-—1

= min AEZV;E 04 pa mzz:l Am (A(u,u ) k:m)‘ (4)
Here X = {\,, | m € [M — 1]} is the set of Lagrange multipliers, that determine
the weight of the penalty imposed for violating the constraints by a solution.
Intuitively, we can see that the Lagrangian relaxation minimizes a linear com-
bination of the energy of the MRF and similarity (negative dissimilarity) to the
MAP solution, with the weighting given by the Lagrange multipliers. Formally,
we can state the following theorem, proven in [5]:

Proposition 1. For all values of A > 0, f(\) is a lower-bound on the value
of the primal problem DivMBEST (A, k). Moreover, f(A) is a piece-wise linear
function and concave in X.

5.1 Supergradient Ascent on the Lagrangian Dual

The tightest lower-bound is obtained by setting up the Lagrangian dual prob-
lem: maxx>o f(A). Since f is a non-smooth concave function, this can be
achieved by the supergradient ascent algorithm, analogous to the subgradient
descent for minimizing non-smooth convex functions [3I]. Since A is a con-
strained variable, we follow the projected supergradient ascent algorithm: it-
eratively updating the Lagrange multipliers according to the following update
rule: XD «— [A®) 4 atVf()\(t))]+, where Vf(A®) is the supergradient of f
at A, oy is the step-size and [], is the projection operator that projects a vec-
tor onto the positive orthant. If the sequence of multipliers {«;} satisfies a; > 0,
limy, oo ay = 0, Z;io oy = 00, then projected supergradient ascent converges to
the optimum of the lagrangian dual [31].

To find the supergradient of f(A), note that f is a point-wise minimum of
linear functions: i.e. f(A) = min, @, - XA + b,. It can be easily shown that the
supergradient of f is given by V f(X) = a ), where f1(X) = argmin,, a,,-A+by,.
We omit the proof due to space constraints.

Mapping this definition to (@), we ApN), 1Y) =k
can see that the supergradient of f  Vf(A) = — o (5)
for our formulation is given by (E): A(a(N), ”jvj;l) ks
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where f[1(A) is the optimal primal solution of (@) for the current setting of A.
This supergradient (and the update procedure) has an intuitive interpretation.
Recall that the Lagrangian relaxation minimizes a linear combination of the
energy and similarity to the MAP solution, with the weighting given by A. If
(XM violates one of the diversity constraints, 4.e. is less than k,, units away

from a previous solution p™, then the supergradient w.r.t. ,\ﬁ,i) will be positive
and the cost for violating the constraint will increase after the update, thus
encouraging the next solution ;l()\(t“)) to satisfy the constraints. Conversely,
if the diversity constraints are satisfied, the supergradient is negative indicating
that )\5,? may be over-penalizing for violations and may be reduced to allow
lower energy solutions.

5.2 Computing the Supergradient

Note that computing the supergradient requires solving the A-augmented
energy minimization problem (). At a high-level, this setup is a similar to
cutting-plane methods for training Structured-SVMs [34], where the generation
of each additional cutting plane requires solving the loss-augmented energy
minimization problem. As we discuss next, for some classes of A-functions, we
can solve the A-augmented energy minimization problem simply by reusing
the same algorithms used for finding the MAP, by modifying the energy of the
MRF. This allows all the developments in the MAP inference literature to be
directly translated to the Diverse M-Best problem, without any changes.

Example: Dot-Product Dissimilarity: A(p,p') = =30, pl Wpl,
i.e. the sum of bilinear forms of labellings at nodes. For discrete solu-
tions p(s),u'(s) € {0,1}, setting W to the identity matrix (I) makes
this dissimilarity function equivalent to the Hamming distance be-
tween the two solutions. In the presence of non-identity W, this is a
weighted-Hamming distance, where W incorporates cross-label similar-
ity. Moreover, note that >, 604 - pa — Z%:_ll Am (A, p™) — ki)
=0+ Zivnj;ll A W) - i+ 37 jyee i - ij- Thus, f(A) becomes the
same as the MAP problem with modified unary energies. When W = [, the
modification simply increases the local cost of each of the previous states pu]* by
Am. Non-identity W “smears” the affect of p}". For this A-function, we can use
any existing MAP inference algorithm to solve this problem. Perhaps the most
attractive feature is that the edge-energies are left unaffected. For instance, if
they were submodular in the original model, they continue to be submodular.
This allows us to use efficient graph-cut algorithms [7],13].

Example: Higher-Order Dissimilarity. Another example of a useful dissim-
ilarity function is one that decomposes into functions of subsets of variables,
ice. Ap, pt') =3 4cy Aa(pa, ply). If each of the these terms A4(-,-) has some
structure, e.g. cardinality potentials [33] or lower linear-envelope potentials [10]
or sparse (pattern-based) higher-order potentials [I4[28], that allows for mes-
sages to be efficiently computed, this A-augmented energy minimization can be



8 D. Batra et al.

performed via dual-decomposition based message-passing algorithms. The de-
tails can be found in the supplementary material (from the authors’ webpages).
Finally, we note that successive supergradient computations (at A and
)\(Hl)) require solving fairly similar inference problems, which may be warm-
started from the solutions of the previous iterations — either by re-using the
search trees in graph-cuts [I1] or by reusing messages in dual-decomposition.

5.3 Tightness of the Lagrangian Dual

Recall that the Lagrangian dual involves finding the tightest lower-bound for the
primal, i.e. maxx>o f(A) < DivMBEST(A, k). One important question to ask is
— when is the relaxation tight? To answer this question, we state the following
theorem (see supplementary material from the authors’ webpages for the proof):

Theorem 1. First, the Lagrangian dual maxx>o f(A) is equivalent to solving
(i.e. has zero duality gap with) the following primal relazation of DivMBEST
(4.k):

ml}n Z 04 -pa (6a)
Aevué

st. pe co{m(s) {01} |pe z(a)} (6b)
Alp, p™) > ki, vme{l,...,M—1} (6¢)

where Co{-} denotes the convex hull of the discrete solutions.

Second, for certain specific A-functions (e.g. the 0-1 function of M-Best
MAP), the convexr hull can be replaced by the discrete solutions themselves, i.e.
(GH) may be replaced by pa(s) € {0,1}, p € L(G). Thus for such specific fami-
lies, the Lagrangian relaxation is tight.

However, if no assumptions are made on A, the Lagrangian relaxation is not
guaranteed to be tight and may leave a duality gap.

Although the dot-product dissimilarity does not lead to a tight Lagrangian re-
laxation, we show in our experiments that even the relaxed solutions achieved
by the Lagrangian dual could be very useful for the applications.

5.4 How Much Diversity?

Our DivMBEST formulation provides a principled way to trade off diversity vs.
optimizing the energy. One issue of practical concern is how the tradeoff param-
eter k is chosen. The answer is related to the topology of the energy landscape.
If k is set too low the next solution may not be able to escape the energy valley
(and thus will not be a real “mode”). If k is set too high, then several modes
will be ignored. An appropriate value of k is problem-dependent and must be
tuned as a free parameter. Moreover, A(k) = argminy s f(\) the optimum set-
ting of lambda is different for different values of k. Thus, instead of performing
grid search on k and running supergradient ascent for each value of k, we can

directly perform grid search on A. Intuitively, this corresponds to learning from
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data a linear weighting between the energy of the model and a diversity-inducing
term. This is computationally much more efficient, both at the validation and
testing stage. For our experiments, we learn the appropriate degree of diversity
by tuning A on a validation data set. This is similar in principle to the treatment
of, say, a regularizer in learning. In the primal form, the regularization parame-
ter limits the norm of the solution, but in practice the Lagrangian multiplier is
treated as a norm penalty coefficient, and directly tuned via cross-validation.

6 Experiments

We apply our Diverse M-Best formulation, with (uniformly weighted) Hamming
(dot product) dissimilarity A, to three scenarios:

1. An interactive segmentation (object cutout) setup in Section G.11
2. Category-level segmentation on PASCAL VOC 2010 data in Section
3. Human articulated pose tracking in video in Section

These scenarios use very different models (a binary pairwise submodular flat
CRF, a multi-label hierarchical CRF with global factors, and a multi-label
tree-CRF), with different MAP inference algorithms (max-flow/min-cut, o-
expansion, dynamic programming). Despite the differences, our approach can
naturally use the inference algorithm in each model to find the Diverse M-Best
solutions.

We can compare DivMBEST against two alternatives for producing multiple
solutions: M-Best-M AP, that produces low energy solutions without a focus on
diversity, and perturbation-based techniques that simply produce diverse solu-
tions without optimization within the original model. Specifically, given a MAP
solution, we can produce additional solutions by changing assignments of a sub-
set of nodes. The subset can be chosen either randomly (denoted Random), or
based on the estimated confidence in the MAP labels; a natural measure of con-
fidence is the entropy of the estimated min-marginals (Confidence). To make
for a fair comparison, for each solution produced by DivMBEST that differs from
MAP in S nodes, we generate a perturbation-based solution that changes exactly
S nodes as well, thus achieving equal amount of diversity with DivMBEST.

We show that both these alternatives fall short in all scenarios. The M-
Best-MAP produces redundant solutions with little extra information over the
MAP, despite significant computational effort. The sampling-based methods pro-
duce solutions that are diverse, but improbable and inaccurate. In contrast,
DivMBEST provides a principled way to trade-off both goals.

6.1 Interactive Segmentation

Interactive segmentation is a task where a user is interested in cutting out a
foreground object of interest from an image via annotations like scribbles [6]
or a coarse bounding box [29]. This is typically treated as a figure/ground
segmentation task, with the MAP solution presented to the user. The user
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Table 1. Interactive segmentation: pixel accuracies averaged over 50 test images

MAP DivMBEST-dot prod. DivMBEST-HOP M-Best Random Confidence
Acc.(%)91.542 95.16 93.82 91.59 91.68 93.17

then provides additional supervision, leading to updated MAP solutions, till
the MAP solution is acceptable. In order to minimize user interactions, the
interface could show not a single cutout, but a set of possible cutouts for the
user to simply select from. To make the most of this setup, this list of solutions
must be small, diverse, and the algorithm that generates it must be efficient.

Dataset, Features, Energies, Inference. We simulate this scenario on 100
images from the PASCAL VOC 2010 dataset, and manually provided scribbles
on objects contained in them; Fig. [2lshows examples. For each image, we set up a
2-label pairwise CRF, with a node term for each superpixel in the image and an
edge term for each adjacent pair of superpixels. At each superpixel, we extract
colour and texture features, and given the foreground/background scribbles on a
single input image, train a Transductive SVM on these features. The node terms
for the image are derived from the output of these TSVMs. The edge terms are
contrast-sensitive Potts. A detailed description of the pipeline, the features and
the parameter setting is in the supplementary materials. Fifty of the images were
used for tuning the parameters, and the other 50 for reporting testing accuracies.

Baselines. The 2-label contrast-sensitive Potts model results in a submodular
energy function so we can efficiently compute the exact MAP solution using
graph-cuts implementation [I3]. Moreover, with Hamming dissimilarity, we can
efficiently and optimally solve the A-augmented energy minimization problem
to compute the Diverse M-Best solutions using graph-cuts as well. As a first
baseline, we implemented the M-best MAP algorithm of Yanover and Weiss [3§],
which requires repeated computation of min-marginals. We computed exact
min-marginals using the dynamic graph-cuts algorithm of Kohli and Torr [12];
these were used to produce the Confidence baseline as well. Finally, we tested
DivMBEST with a higher-order potential (HOP) dissimilarity; we include the
results in Table [l and give additional details in supplementary material.

Results. For each of the 50 test images in our dataset we generated MAP and
5 additional solutions using the methods described above. Table [I] shows the
max accuracy of these 6 solutions for each method, averaged over 50 images.
We can see that DivMBEST solutions result in the highest improvement over
MAP. Figure @] shows some example segmentations. Notice that the 2"?-best
MAP solution is nearly identical to the MAP solution whereas the solution from
DivMBEST is qualitatively different, and could be significantly closer to the
ground-truth labeling when MAP makes a mistake. In one case, the 2"¢ mode
found another instance of the object that MAP had missed, and in another, it
completed a thin long structure (the arm of the person). These results suggest
that the segmentation model is not completely accurate but still contains useful
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segmentations as other modes of the CRF distribution. DivMBEST provides a
principled way of extracting these other segmentations.

6.2 Category Level Segmentation

Problem. In the second experiment we consider the problem of category-level
segmentation, i.e. labeling each pixel in an image with one of 20 object cate-
gories or the background. This task is part of the PASCAL VOC comp5 challenge.

Model. The model we consider for this problem is the Associative Hierarchical
CRF of Ladicky et al. [15], which achieved competitive results in recent
years’ VOC challenges. We used the publicly available implementation by the
authors — the Automatic Labeling Environment (ALE) [I7]. ALE includes many
kinds of potentials: unary potentials based on textonboost features, P" Potts
terms (between superpixel nodes and pixel nodes) and a global co-occurence
potential [16]. In a sequence of papers [I5L[16], the authors developed a MAP
inference algorithm for this model, and we are directly able to utilize this
algorithm to compute DivMBEST solutions, by rerunning it with modified node
energies.

Baselines. The same three baselines as in Section are applicable here,
however we found the M-best MAP algorithm [38] to be infeasibly slow for this
model. Unlike the previous application, energy in this model is not submodular
and does not allow for efficient computation of min-marginals. According to
our estimates, it would take 10 years of CPU-time to compute each additional
M-Best MAP solution for each image. On the other hand, computation of each
additional solution for DivMBEST takes the same time as MAP. We also report
the Random (averaged over ten runs) and Confidence baselines.

Results. We evaluated all methods on the VOC 2010 dataset, consisting of
train, validation and test partitions with 964 images each. We use the standard
PASCAL pixelwise “intersection / union” performance measure for each cate-
gory. Since labels for test are not directly available, we first compare different
methods for obtaining multiple solutions on validation (having trained the model
on train), and then report accuracy on test (having trained on trainval).

Given a set of candidate segmentations, one could select a single solution
from the set, or combine them, obtaining a solution not equal to any of the
candidates. We discuss means of achieving this automatically below; here we
consider an “oracle” evaluation protocol designed to measure the upper bound
on performance of any eventual selection mechanism.

On validation data, for which we have ground truth, we obtained the oracle
accuracy automatically by selecting, for each image, the solution with the
highest pixel label accuracy averaged over categories. Table 2l shows the result
of this evaluation for DivMBEST and the two sampling baselines, with M = 10.
On test we manually selected the solution that was visually perceived to be
the best among the M solutions. Since the baselines are clearly inferior, we
only evaluated the oracle on test with DivMBEST, M = 10, with the results in
Table Bl With larger values of M on validation (Fig. B]) the oracle bound goes
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Table 2. VOC 2010 Validation set accuracies
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Table 3. VOC 2010 Test set accuracies
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further up and with M = 30 the average accuracy on validation reaches about
48%, a near 7%-point improvementﬁ over state of the art!

Ranking. The oracle results above indicate that the
small set of diverse solutions from DiwMBEST has a
lot of potential; to realize this potential one needs a
ranking and/or combination mechanism. A method re-
cently proposed in [19] is designed to rank and combine
a very large pool of segments (single label masks) most Number of Modes
of which are of poor quality. This is different from the I
situation here (very small number of full image seg- _,

mentations, some of which are of high quality) but a \P:slg}\i'of?g)lé;)i%uffaaﬁ
snn.llar m.eth(.)d may be applicable, and we are investi- dation. Red: DivMBEST,
gating this direction. blue: Confidence

s &
5 &

Mean Pascal Accuracy

6.3 Pose Estimation

Problem. We applied our formulation to the problem of tracking and estimating
the pose of people in video sequences — a challenging problem due to appearance
variation and articulation. We follow the setup of Park and Ramanan [25],
where M candidate human poses are generated for every frame, and a single
smooth track is selected using temporal context. We compare different meth-
ods that produce M-best pose estimates with respect to the quality of the tracks.

2 The winning entry of VOC2010 competition achieved 40.1% on test. Accuracies on
validation and test aren’t directly comparable, but performance of most techniques
is higher on test than val, and the purpose of the comparison here is to give a
qualitative idea of relative performance.
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Model. The model we consider for this problem is the articulated part-based
model of Yang and Ramanan [37], which has demonstrated competitive perfor-
mance on various benchmarks. The variables in the model are part (head, body,
etc) locations and type. The graph-structure is a tree and (exact) inference is
performed by dynamic programming. We used the authors’ implementation, and
modified node potentials to produce Diverse M-Best solutions.

The tracking model [25] is a chain-CRF, where each frame is a node whose
label is the choice of the mode. Node potentials prefer low energy modes and
edge-potentials prefer smooth transitions between successive frames. Exact
MAP inference on the chain-CRF was also performed via dynamic-programming.

Dataset, Baselines. We used the dataset of [25] which consists of four video
sequences (walking, pitching, lolal, lola2) of varying lengths for which a few
frames have been manually annotated with ground-truth limb locations. We
compared DivMBEST against the NBest method of [25], which is a special
case of our formulation (as we describe in Section Hl). Note that in [25] NBest
was shown to outperform a number of sampling-based algorithms. We also
compare to a Confidence baseline, where parts are repositioned to the next
best position in the min-marginal table that hasn’t been used for previously
generated candidates. We omit Random since it is clearly inferior.

Results. Each algorithm was used to generate M candidate poses for all frames
in every sequence. A track was computed using the chain-CRF to select a sin-
gle pose for each frame. Algorithms were evaluated on the recovered tracks by
computing Percentage of Correct Parts (PCP) scores (avg-CRF-PCP), which is
shown in Fig. @l DivMBEST produced the best tracks for the vast majority of
sequence-M combinations. For sequences lolal and lola2 DivMBEST significantly
outperforms NBest by 10% and 4% points respectively.

walking pitching lola1 lola2
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&o. 082 08

& [ Awe

E‘: X 038 j_’L ' 07,
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o

g 0.78 0.6} 04 NBest
0.88 0.7 0:“ A e ——) ~—Conf.
0 foo 200 300 0 foo 200 300 0 fo0 200 300 0 foo 200 300

Fig. 4. Average PCP scores for the pose tracks vs. M (avg-CRF-PCP)
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Fig.5. Oracle PCP scores averaged across frames vs. M (avg-Oracle-PCP)
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We also evaluate “oracle” accuracies by selecting for each frame the most
accurate (w.r.t. the ground-truth) pose among M (avg-Oracle-PCP), which is
shown in Fig. Bl In general, we observed that DivMBEST was able to produce
better sets of hypotheses than NBest and Confidence across all values of M.

Finally, additional analysis, including average Hamming distance of the modes
to the MAP solution, is included in the supplementary materials.

7 Discussions and Conclusion

We have presented the first algorithm for the Diverse M-Best MAP problem,
which involves finding a diverse set of highly probable solutions under a discrete
probabilistic model. Our Lagragian relaxation formulation involves solving the
A-augmented energy minimization problem, minimizing a linear combination of
the energy and similarity to previous solutions. We showed that this formulation
is a generalization of the M-best MAP problem and that for certain classes
of the A-function, DivMBEST can be computed using the same algorithms as
those developed for computing the MAP solution. With some of the models and
inference algorithms commonly used in vision, this can be tremendously useful.

Currently researchers have to design sophisticated high-order models for im-
ages and clever optimization methods to allow for reasonably efficient inference
under such models. Our work suggests a different paradigm: use simpler models
in which exact or approximate MAP inference, and thus DivMBEST inference
with sufficiently nice A, is tractable, and obtain a set of diverse solutions. Then
merely evaluate the more complex high-order model on these solutions to rank
or otherwise combine them to provide the final output.

In this vein, our results bring into focus the problem of ranking a small set of
diverse highly probably solutions. This is seen most dramatically in the results on
VOC segmentation data; if one could only pick the most accurate segmentation
in a pool of 30 segmentations for an image, one would improve the state of the
art on VOC 2010 by 10%-points.

As future work we would like to investigate the performance and implications
of other A-functions, apply them to higher-order energy functions and also apply
this method to speed up cutting-plane methods for training Structural SVMs.
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