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Abstract. Multiple Instance Learning (MIL) has been widely used in various
applications including image classification. However, existing MIL methods do
not explicitly address the multi-target problem where the distributions of positive
instances are likely to be multi-modal. This strongly limits the performance of
multiple instance learning in many real world applications. To address this prob-
lem, this paper proposes a novel discriminative data-dependent mixture-model
method for multiple instance learning (MM-MIL) approach in image classifica-
tion. The new method explicitly handles the multi-target problem by introducing
a data-dependent mixture model, which allows positive instances to come from
different clusters in a flexible manner. Furthermore, the kernelized representation
of the proposed model allows effective and efficient learning in high dimensional
feature space. An extensive set of experimental results demonstrate that the pro-
posed new MM-MIL approach substantially outperforms several state-of-art MIL
algorithms on benchmark datasets.

1 Introduction

With the pervasion of digital images, automatic image classification has become in-
creasingly important. Multiple-instance learning (MIL) [2] is a useful technique in ma-
chine learning that addresses the classification problem of a bag of data instances. In
multiple instance learning, each bag is composed of multiple data instances associated
with input features. The purpose of MIL is to accurately predict bag level labels based
on all the instances in each bag with the assumption that a bag is labeled positive if at
least one of its instances is positive, whereas a negative bag only contains negative in-
stances. In the case of image classification, each image is treated as a bag and different
regions inside the image are viewed as individual data instances [[15]].

The advantage of MIL ascribes to the fact that in training it only requires the label
information of a bag instead of individual instances in the bag. However, due to the la-
bel ambiguity in the instances, traditional supervised classification methods may not be
directly applied to MIL framework. Existing methods in solving MIL problem fall into
two categories. The first category is generative model based algorithms, such as axis
parallel hyper-rectangles [2], Diverse Density (DD) [9] and Expectation Maximization
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Fig. 1. Six images from COREL dataset. The top three images have a common concept ‘animal’.
The bottom three images form a concept ‘apple’. Different colors represent different clusters the
instances lie in.

DD (EM-DD) [10]. For example, EM-DD generates data instances in bags with their
labels in a joint manner. The second category is discriminative model based methods
including DD-SVM [[7], MI-SVM [, MILES [8]}, etc. These methods model the labels
of bags and data instances by the input features of data instances or bags. For exam-
ple, some methods based on SVM map features into a high dimensional feature space,
with a non-linear function, and then apply the standard kernelized large-margin SVM
framework to train a classifier from the constructed new features. These large margin
discriminative methods often generate more robust results compared to the generative
algorithms.

However, most existing multiple instance learning algorithms do not explicitly ad-
dress the multi-target problem, where positive instances often tend to have multi-modal
distributions or lie in different clusters in many real word applications. Two examples
are provided as follows. In the first example the concept is ‘animal’. There are vari-
ous kinds of animals in the training samples like fox, elephant and tiger (top row in
Fig[l). Different species have different characteristics in terms of color, size, shape, etc.
Therefore, the positive instances come from distinct clusters and form a multi-modal
distribution in the feature space. Even if the concept is relatively ‘small’, the instances
could still form several compact clusters. In another scenario, the concept is ‘apple’.
The images in the bottom row in Fig[ll show three training examples. All the three
images contain the concept ‘apple’. However, the positive targets in the pictures are
different as red apple, green apple and half-apple, which form different clusters. Please
note that the multi-target problem of multiple instance learning is different from multi-
class multiple instance learning since no specific class information is available for the
diversified representation of positive instances and all positive bags are labeled in the
same manner.

To address this problem, this paper proposes a novel data-dependent Mixture-Model
MIL (MM-MIL) approach in the discriminative learning framework to handle the multi-
modal distributions of positive data instances for image classification with multiple in-
stance learning. In particular, a set of latent variables are introduced to represent the
clusters associated with each data instance based on a multinomial logit model. Within
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each cluster, a logistic regression model is utilized to generate labels given the input
features of individual data instances. These two models are integrated together for rep-
resenting the assumption of multiple instance learning as each positive bag contains at
least one positive data instance and each negative bag does not contain any positive in-
stance. Furthermore, a kernelized presentation of the new method is proposed to allow
effective and efficient learning in high-dimensional space. An efficient inference algo-
rithm is derived for the proposed method based on a combination of Expectation and
Maximization (EM) method and gradient descent optimization.

To our best knowledge, the MM-MIL model is the first concrete research work that
explicitly addresses the multi-target problem in multiple instance learning. The main
contributions of this paper are: First, the proposed MM-MIL model introduces a data-
dependent mixture model that effectively captures the multi-modal distributions among
the instances and formalizes the problem into a regularization framework. Second, we
introduce an efficient inference algorithm to solve the optimization problem by com-
bining the EM method and gradient descent scheme. Third, a kernelization framework
is proposed to allow effective and efficient learning, especially for large scale image
dataset.

The rest of the paper is organized as follows. Section 2 discusses the related work
on MIL-based image classification. Section 3 proposes the novel MM-MIL method,
which includes the problem formulation, the inference algorithm and the kernelization
framework. We will also discuss the relationship between MM-MIL and some other
existing MIL algorithms. Section 4 presents an extensive set of experimental results on
different datasets for comparing the MM-MIL method with several state-of-the-art MIL
algorithms. Section 5 concludes and points out some possible future research directions.

2 Related Work

Image classification algorithms based on multi-instance learning (MIL) model the rela-
tionship between labels and regions [2/10J7/8]]. An image is treated as a bag consisting
of multiple instances, ie, regions. Existing MIL algorithms can be divided into two cat-
egories, generative models and discriminative models. Generative model methods, like
EM-DD [10], try to learn a single target distribution to generate instances/bags and
their labels in a joint manner. Discriminative models focuses on modeling data/bag la-
bels given features of data instances, which include MI-SVM [1]] and MILES [8] based
on kernelized support vector machine.

Many generative algorithms try to predict bag labels by first inferring the hidden
labels of individual instances. The Diverse Density (DD) [9] approach uses a scaling
and gradient search algorithm to find the prototype points in the instance space with
the maximal DD value. Zhang and Goldman [10] combined the idea of Expectation-
Maximization (EM) with DD and developed an algorithm, EM-DD, to search for the
most likely concept. These methods are quite efficient in learning, but they are based
on the assumption that that all positive instances form a tight cluster in the feature
space [3]], which is not realistic in applications with diversified positive instances. The
research work in [9] briefly mentioned that it is possible to model multiple concepts
within a generative model, but no concrete prior research work has been conducted for
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this. We also designed the first concrete generative multiple instance learning algorithm
for multiple concepts in this paper. But the empirical results and discussions in section 4
show that our discriminative data-dependent mixture-model outperforms the generative
model for multiple instance learning with multiple concepts.

Most discriminative methods attempt to directly predict bag labels in a large margin
framework. DD-SVM [7] selects a set of instances using the DD function, and then a
SVM is trained based on the bag-level features summarized by these selected instances.
In MI-SVM [1]], Andrews et al formulated MIL as a mixed integer quadratic program-
ming problem. Integer variables are used to select a positive instance from each positive
bag. A standard SVM framework is introduced to tune the variables. In the work of
MILES [8]], bags are embedded into a feature space defined by all the instances. 1-norm
SVM is applied to train the bag-level classifiers. Some methods based on instance-level
information were also proposed. Yang et al [11l] proposed an Asymmetric Support
Vector Machine-based MIL algorithm (ASVM-MIL) by defining an asymmetric loss
function to exploit instance labels. Ray et al [17] extended the DD framework by using
a Logistic Regression algorithm to estimate the equivalent probability for an instance
and a softmax function is used to combine the instance-level information to predict
the bag label. Boosting methods such as MILBoost [[13] translated MIL into an Ad-
aBoost framework, where the combination function (eg, Integrated Segmentation and
Recognition (ISR) or noisy-or) is applied to combine instance labels into bag label. Fu
et al [3]] proposed an instance selection MIL approach which aims to handle large scale
data. A kernel density estimator is first learned from all the negative instances in nega-
tive bags to reduce the number of positive candidates. One instance per positive bag is
selected to represent the concept. Standard SVM is then applied to train the classifier
based on constructed bag-level features. Discriminative methods are often more robust
and achieve improved performance compared to the generative approaches.

Recently, several MIL methods [23l27]] has been used for online visual tracking. A
discriminative classifier is trained in an online manner to separate the object from the
background. Qi et al [6] explicitly modeled the inter-dependencies between instances
by using concurrent tensors to better capture images’ inherent semantics. Rank-1 tensor
factorization is applied to obtain the label of each instance. A kernelization framework
is then used for learning. In the work [25l32], Random Forest methods have been pro-
posed to dealing with the multi-class/multi-label problem in MIL. Hidden class labels
are defined inside bags as random variables. These random variables are optimized by
training random forests and using a fast iterative homotopy method for solving the non-
convex optimization problem. The multi-label issue is also addressed in work [5126],
where multi-label MIL algorithms are introduced to simultaneously captures both the
connections between semantic labels and regions and the correlations among the labels
based on hidden conditional random fields. Most recently, Dan et al [29/30] introduce
the un-supervised learning methods under the maximum margin principle for multiple
instance clustering, where bag labels are not utilized in training. A semi-supervised
MIL approach [28] is also proposed by him in learning structured data. Multiple in-
stance active learning for localized content based image retrieval is proposed in [32].

However, none of existing works in multiple instance learning addresses the multi-
target problem where positive instances may lie in different clusters in the feature space.
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To address this issue, we propose the MM-MIL algorithm, which will be described in
the next section.

3 Mixture Model Multiple Instance Learning

This section presents the novel MM-MIL model that explicitly addresses the multi-
target problem in multiple instance learning. We first introduce some notations. Let bag
set B = {B;},i = 1,2,...,N.Let L = {l;} denotes the bag labels. [; = 1 or 0
indicates B; is a positive or negative bag. Let B; = {B;;},j = 1,2, ..., N, where B;;
is the j'" instance in bag B;. Let y; = P(+|B;) denotes the probability of B; being
a positive bag and y;; = P(+]|B;;) denotes the probability of B;; being a positive
instance.

3.1 Problem Formulation

Given B and L, our goal is to maximize the following conditional probability:
N
P(L|B) = HP (l:|B:) = T] P(+1B:)" (1 = P(+]Bi)* " (1)

In our method, we make a similar choice like many existing multiple instance learning
works, eg, IS-MIL [3]], for modeling P(+|B;) as follows:

P(+|B;) :mjaXP(-‘r‘Bij) 2

which means we select the instance with the maximum probability to be positive to
represent the bag. This is also consistent with the MIL assumption. It is also possible to
make other choices like a softmax [[17] to combine instance labels.

As we discussed in section 2, traditional MIL algorithms do not explicitly address the
multi-target problem when modeling the probability of an instance being positive, ie,
P(+]|Bj;). For example, say the concept is ‘animal’ (Fig[I), the positive instance could
lie in a cluster that stands for ‘tiger’ where the bag should be labeled as positive. It is also
possible that the instance comes from an ‘elephant’ cluster which also indicates the bag
positive. In order to capture the multi-modal distribution, we encode a data-dependent
mixture model on P(+|B;;) assuming that there are M clusters that represent the M
targets in the feature space. A latent variable z,, is introduced to denote the m'" cluster
that the instance lies in. Then the probability of an instance to be positive can be written
as:

'HBZ] ZP‘Hva U (Zm‘BZ]) 3)

The first term P (4|2, B;;) indicates the probability of B;; being positive within clus-
ter z,,. We use a logistic regression model for the purpose, which is similar with the
logistic function chosen in [13] and [19]:

1

4
1+ exp(—tL B;j) “)

P(+|2m, Bij) =
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where t,, is the model parameter in the m‘" cluster. The second term, P(z,|B;;),
in Eqn[3] indicates the probability that instance B;; lies in the cluster z,, , which is
actually a multi-class distribution and we apply a multinomial logit model to capture
the underlying probability:

exp(wTTnBij)
Sy exp(w! Byj)

where w,, is the model parameter. Both two parts in the mixture model are dependent
on the data instance B;;, which is more flexible to capture the dependencies among
instances. Let i = P(4|2m, Bij), Oijm = P(zm|Bij). Note that >~ 0;;m = 1
for every instance. Substituting Eqn. and [3] into Eqn[I] and taking the negative
logarithm on both sides we have:

N M M
E=— Z ((li ln(mjax Z Yijmbijm) + (1 — ;) In(1 — max Z yijmeijm)> (6)
m=1

i=1 = J m=1

Maximizing the probability in Eqnilis equivalent to minimize Eqnl@l In order to avoid
overfitting, a regularizer is introduced on the model parameters, w,,, and t,,. Then we
obtain the following optimization problem:

N M M
min — Z ((lZ In(max Z Yijmbijm) + (1 — ;) In(1 — max Z yijqneijnL))
J

w,t .
=1 m=1 m=1

M M
2 2
+)‘Z|‘wm‘| +ﬁZHth
m=1 m=1
(7

where A and [ are weight parameters. We now describe an iterative EM and gradient
descent algorithm for solving the above optimization problem.

3.2 Inference Algorithm

Directly minimizing Eqn[7lis intractable, as many terms are coupled together and a max
function makes it non-differentiable. The EM framework is a powerful tool in learning
mixture models [16]. In this section, we first derive an upper bound for Eqn{7 and then
an iterative EM scheme is developed to solve the optimization problem.

Inspired by IS-MIL [3]] and MI regression [21], in the E-step of each iteration, we
remove the max function in Eqnlél by choosing one instance per bag which has the
maximum probability to be positive based on the previous w and ¢ as follows:

M
J* = argmax Z yijmaijm (8)
J m=1
Denote ¥im = Yij*m, Oim = 0ij=m since j* is fixed during the current iteration. Using
. M M
the fact ) 0i,, = 1, wecanobtain 1 — > Yimbim = > .1 Oim (1 — Yim ). Then
Eqgnl6lcan be written as:
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Z (l ln Z yzm zm 1 _l hl 1- Z yzm im >

i=1

M
Z(l In Zazmym (1 —1;) In( Zezmlyzm)>
m=1

m=1

€))

We now establish an upper bound of Eqn. 9 with Jensen’s inequality by observing that
logarithm function is a concave function and Zm Oim = 1.

N M
= Oim(li i + (1= 1) In(1 = yirn) (10)

i=1 m=1

Denote Yim = Lilnyim + (1 — ;) In(1 — yim). In M-step, using a similar divide-
and-conquer strategy in [24], we minimize the above upper bound plus regularization
terms by splitting it into two slightly simpler sub-problems. The idea is that we first fix
0ir, = 0%, that is obtained from the previous iteration, and then find ¢ which optimize
the following sub-problem:

N M M
=N Aim B Y [l (11)

i=1 m=1 m=1
Furthermore, we can fix y;, = yl that gives us 7% and solve for the following
optimization problem for ~:
N M
=D > O+ A Z [l (12)
i=1 m=1

SP1 is essentially a combination of weighted logistic regression and SP2 can be
viewed as a multi-class logistic regression. A direct gradient descent scheme could be
applied for solving these two sub-problems. We refer to chapter 4.3 in [22]] for full de-
tails. By solving S P1 and S P2 iteratively in the M-step, the obtained optimal solutions
of w, and ¢, are then substituted into Eqn[8]to update the instance chosen from each
bag.

3.3 Kernelization Framework

In this section, we will seek for optimal functions defined over the feature space on
the basis of a kernelized representation of two sub-problems, S P1 and S P2. Consider
S P1 first, since the objective function is point-wise, which only defines on the value of
tT B;; at the instances {B;;- : 1 <=1 <= N}, based on the generalized representer
theorem [20], the minimizer exists and has a representation of the form:

t' B, ZamZkB Bij-) =kp, o (13)

ZT7
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where k(B;:,, B;j) is a kernel function defined on the feature space of instance. A
[1B,;, —Bill?

oz ), 02 is the radius

Gaussian Kernel is defined as k(B ., B;j) = exp(—

1T

parameter. Substituting Eqn[I3]into S P1, we obtain:

M M

SPli i — > (B R Kal, — 6% n(1 +exp(Kat,))) + 8 Y (ak,) Kab, (14)
m=1 m=1

where6F, = (07, 0%, ], (0k)" = [0y, ol ) (00, = [0F,, 11, -, 0%, IN]

and K is the Gram matrix with the kernel function defined above. To solve SP1;,,., we
derive the partial derivative w.r.t. o, :

t
O5Plker _ (T K 4 6,7 exp(Kab,)

K +28(a,) K 1
at, 1 +exp(Kak,) +26(om) (15)

With this obtained gradient, L-BFGS quasi-Newton method [18]] is applied to solve this
optimization problem. Similar to the work [12] and [4], the minimizer of SP2 has a
form:

N
wgr;Bi’r = Za%ik(Bi’m Bij-) = kTi,Ta% (16)
i=1
Substituting Eqn/I6linto S P2, we obtain:
N M exp(kgr_o) M
SP2ep : — ’ a by w) Ko, 17
k z; mz:I’Yzm Zr eXp(kB:It a:,”) + mzjl (am) Qpy ( )
1= = ij* =

The scheme for solve S P2, is contained in [12]], we refer to section 5 in [[12] for
details on the optimization algorithm of the above multi-class kernel logistic regression.
The complete kernelization framework for MM-MIL is shown in Table [l Note that in
the kernelization framework, the parameters are at and o®, which are updated in the
M-step and are fixed and utilized to calculate y;;,, and 8;;, in the E-step.

3.4 Discussion

In the novel MM-MIL model, M is the number of latent clusters formed by the in-
stances. Different M will have different behavior. When M equals 1, which means we
assume all instance comes from one cluster, then Eqn[9becomes:

N
E=-) (Liny + (1—1)h(l—y)) (18)

=1

Now we discuss the relationship between our MM-MIL and some previous methods
when M = 1. If choosing In y; to be a quadratic loss function, Eqn[I8]is exactly the
EM-DD model. When modeling In y; by a logistic loss function, the above model turns
out to be MI-Regression in work [21]. If putting a hinge loss function on In y;, then
EqnlI8| could be optimized using a standard SVM framework in a similar way to MI-
SVM [1]] and MILES [8]]. With a value of M larger than 1, ie, the latent number of
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Table 1. Our full kernelized MM-MIL inference framework

Initialize M ,\,5,0 and K
Initialize parameters o and o®
Start EM iterations
E-step:
Calculate ¥, based on Eqnsdland [13]
Calculate 6;,, based on Eqns[5and
Select one instance per bag from Eqn[g]
M-step:
Obtain ot by solving S Plger
Obtain a® by solving S P2,
Update 0;, and v;y,, by Eqns BI5I13] and
Repeat the above three steps until convergence
Update o and o™ repeat EM iteration until convergence

clusters increase, which makes our model more flexible in modeling the dependencies
between the instances. The desired value of M can be obtained by cross-validation
or utilizing some model selection criterions like the Bayesian Information Criterion.
This work uses cross validation and the empirical studies in section 4 show that robust
classification results can often be obtained with a reasonably wide range of M values.

4 Experimental Results

In this section, the MM-MIL is evaluated with three configurations of experiments.
First, MM-MIL is evaluated on several multi-target datasets to show the advantage of
data-dependent mixture model against several existing algorithms in this setting. Sec-
ond, MM-MIL is compared with existing MIL approaches in image classification on
the commonly used COREL and SIVAL benchmark datasets. Third, we provide more
experimental results to study the choice of M in terms of classification accuracy.

Each image is a bag and segments are instances. A set of low-level features is ex-
tracted from each segment to represent an instance, including color correlogram, color
moment, region size, wavelet texture and shape. Some model parameters in our exper-
iment are Gaussian Kernel radius o2, and the weight parameters \ and 3. We apply a
twofold cross-validation on the training set to obtain the optimal values. o2 is chosen
from 1 to 15 where A and §3 are selected from 0.01, 0.1, 1,10,100. The number of hidden
clusters M is picked in the same manner from 1 to 15. During each experiment, images
are randomly partitioned into two halves to form the training and the testing sets. Each
experiment is repeated 10 times and the average results are calculated.

4.1 Evaluation on Multi-Target Datasets

In order to illustrate the ability of MM-MIL in capturing the multi-modal concepts, we
merge several categories that form similar concepts together into a lager dataset. Within
our experiment, we construct three such merged data sets. The first merged data set, we
refer to MergeDatal, is collected from the Tiger, Fox and Elephant data set [1] which
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Fig. 2. Examples of positive instances selected from different clusters (three different colors).
The left three columns are from MergeData2 and the right three columns are from MergeData3.
The first and third row contains twelve original images and the second and fourth row shows the
corresponding segmented regions.

form a general concept ‘animal’. The are 600 images in MergeDatal with 300 posi-
tive images and 300 negative ones. The second data set, MergeData2, is mixed from
three SIVAL categories, ie, DataMiningBook, RapBook and StripedNotebook, contain-
ing a common concept ‘book’. MergeData3 is combined by another three classes, Card-
boardBox, FabricSoftenerBox and GreenTeaBox, from SIVAL data set, where ‘box’ is
the ideal concept. Both MergeData2 and MergeData3 contain 360 images with half
positive images and half negative images, where the negative ones are randomly chosen
from other categories.

Various measurements can be applied for evaluating the performance. In our exper-
iments we will use AUC (area under the ROC curve), which is a widely used metric in
multi-instance learning tasks. The ROC curve shows the relationship between the true
positive rate and the false positive rate, and AUC measures the probability that a ran-
domly chosen positive image will be ranked higher than a randomly chosen negative
image [6].

We compare our MM-MIL with EM-DD, MI-SVM, mi-SVM, DD-SVM, MILES,
IS-MIL and MIForest. In order to obtain a full comparison, we also implement a gen-
erative multiple instance learning algorithm MC-EMDD for multiple concepts within
the EM-DD framework as we mentioned in section 2. In MC-EMDD, y;; is modeled
by P(+|B;j) = max; P(+|B;;) where +; is the t'* disjunctive concept [9]. The re-
sults are given in Table Bl which show that MM-MIL achieves the best results among
the key MIL methods on all three merged datasets. This is because all these merged
data sets strongly reflect the multi-target problem, and MM-MIL can effectively model
this underlying pattern with a data-dependent mixture. Although MC-EMDD also con-
siders multi-modal concepts, the results of MM-MIL are substantially better. Our hy-
pothesis is that MM-MIL benefits from both the smaller asymptotic error rate as a
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discriminative model and the data-dependent mixture modeling, while MC-EMDD is a
generative model and can be shown to use data-independent mixtures. Different from
previous methods, the proposed MM-MIL can not only label the regions (instances), but
also tell which cluster a positive instance lies in by computing the posterior probability
P(zm|Bij, +). Figures [[ and 2] show several examples of positive instances selected
from different bags. As illustrated, the new MM-MIL algorithm successfully localizes
the target regions from each image and explicitly identifies the latent cluster the target
belongs to.

Table 2. Average AUC for merged datasets and benchmark datasets by different algorithms

Algorithms ~ MergeDatal MergeData2 MergeData3 COREL SIVAL

EM-DD [10] 0.543 0.643 0.661 0.564 0.687
MC-EMDD  0.602 0.694 0.718 0.616 0.691
MI-SVM [1] 0.536 0.628 0.652 0.535 0.698
mi-SVM [1]] 0.542 0.614 0.674 0.557 0.683
DD-SVM [7] 0.568 0.671 0.704 0.675 0.762
MILES [8] 0.574 0.682 0.726 0.683 0.814
MIForest [25] 0.669 0.675 0.731 0.671 0.784
IS-MIL [3] 0.661 0.745 0.768 0.697 0.805
MM-MIL 0.713 0.815 0.854 0.790 0.819

4.2 Evaluation on Benchmark Datasets

The COREL dataset contains 2000 images from 20 different categories, with 100 im-
ages in each category and the SIVAL benchmark includes 25 different image categories
with 60 images in each. COREL images contain various scenes and objects, eg, build-
ing, bus and elephant, where the target is typically close-ups and centered in the image.
SIVAL consists of images of single objects photographed under different backgrounds,
where objects may occur anywhere spatially in the image and also may be photographed
at a wide-angle or close up. These two benchmarks were used extensively in the pre-
vious MIL researches [7U8l645.14]. The COREL dataset contains diversified positive
instances while SIVAL dataset generally contains images with a single object in each
category.

MM-MIL is compared with EM-DD, MI-SVM, mi-SVM, DD-SVM, MILES, IS-
MIL and MIForest on these two benchmark datasets. M is chosen by cross-validation
as in section 4.1. The average AUC results are reported in Table[Rland it shows that MM-
MIL outperforms other methods on both COREL and SIVAL datasets. The AUC dif-
ference between MM-MIL and previous methods on SIVAL is relative small, whereas
the difference on COREL is larger. The reason is that for one category, the targets from
COREL images have very different features. For example, the ‘Dinosaur’ category con-
sists of various kinds of dinosaurs. While in SIVAL dataset, each category contains one
identical object with different backgrounds. Therefore, the AUC gap between MM-
MIL and existing method is larger on COREL than that on SIVAL images. The superior
performance of our method against existing discriminative MIL methods is mainly be-
cause: traditional MIL approaches are trying to learn one classifier for all instances/bags
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based on SVM framework, while our method first learn to separate instances into differ-
ent clusters, and then a classifier is trained inside each cluster. Therefore, our MM-MIL
method is more powerful in capturing the underlying patterns of the distribution of
instances.

4.3 Experiments with Different Number of Hidden Mixtures

Figure [3] illustrates how the performance of MM-MIL varies with different values of
M as the number of clusters. We plot the average AUC of MergeDatal, MergeData2,
MergeData3, COREL and SIVAL against the number of clusters from 1 to 10. When M
equals 1, our proposed method degrades to a logistic regression model and has almost
the same power as existing discriminative algorithms. With increases of M, up to a
certain value, the performance saturates, which represents the true underlying pattern
in the dataset. As illustrated in Figure[3] the saturated M in MergeDatal, MergeData2
and MergeData3 is around 3 which capture the true clusters in these datasets. The AUC
curve of COREL keeps increasing till M approaches 6, while the SIVAL curve is almost
flat since there is a single target in SIVAL dataset from each category. It can be seen
from Figure[3that MM-MIL generates accurate results with a reasonably wide range of
M values.

0.85

0.8

Q Q
3 0.75
2 2
0.7
0.6/ —f— MergeData1 || 0.65 1
== MergeData2 SIVEL
—8— MergeData3 COREL
0.55 I I L L L : : 0.6 I . L . 1 1
2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
number of clusters (M) number of clusters (M)

Fig. 3. AUC curves on different number of clusters for MergeData, COREL and SIVAL

5 Conclusions

Multiple instance learning is an important research topic with many applications such
as image classification. Existing MIL methods do not explicitly address the multi-target
problem where the distributions of positive instances are likely to be multi-modal in
many practical applications. This paper presents a novel data-dependent mixture-model
approach in the discriminative framework for multiple instance learning, which explic-
itly addresses the multi-target problem. Furthermore, a kernelized framework is pro-
posed to allow efficient modeling within high dimensional feature space. Empirical
results in image classification have shown that the new method outperforms several



672 Q. Wang, L. Si, and D. Zhang

existing MIL algorithms on several datasets with multi-target positive instances and is
consistently better than existing algorithms on benchmark datasets.

There are several possibilities to extend the research in this paper. For example, we
plan to investigate different methods of combining instance labels to bag labels. We
also plan to study the behavior of different types of kernels used in the classification.
Furthermore, we plan to explore a non-parametric Bayesian method for modeling mix-
tures.
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