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Abstract. Many new computer vision applications are utilizing large-scale data-
sets of places derived from the many billions of photos on the Web. Such applica-
tions often require knowledge of the visual connectivity structure of these image
collections—describing which images overlap or are otherwise related—and an
important step in understanding this structure is to identify connected components
of this underlying image graph. As the structure of this graph is often initially un-
known, this problem can be posed as one of exploring the connectivity between
images as quickly as possible, by intelligently selecting a subset of image pairs
for feature matching and geometric verification, without having to test all O(n2)
possible pairs. We propose a novel, scalable algorithm called MatchMiner that
efficiently explores visual relations between images, incorporating ideas from rel-
evance feedback to improve decision making over time, as well as a simple yet
effective rank distance measure for detecting outlier images. Using these ideas,
our algorithm automatically prioritizes image pairs that can potentially connect
or contribute to large connected components, using an information-theoretic al-
gorithm to decide which image pairs to test next. Our experimental results show
that MatchMiner can efficiently find connected components in large image col-
lections, significantly outperforming state-of-the-art image matching methods.

1 Introduction

The last decade has witnessed explosive growth in the availability of image data. Thou-
sands of photos are added every minute to online repositories, such as Flickr and Face-
book, with views covering large parts of the Earth. A number of new geometric
computer vision applications have been built on top of such large-scale photo collec-
tions of places [4,5]. A key requirement of these systems is to identify the connectivity
of an image collection in the form of an image graph where each image is a node, and
where an edge connects each pair of images that visually overlap. For unstructured im-
age collections, the structure of this graph is initially unknown—i.e., we do not know
which pairs of images match, and accordingly what edges exist—and thus needs to be
discovered, usually using the tools of feature matching and RANSAC-based geometric
verification [7] to test the existence of edges (i.e., overlapping images). However, this
matching and verification process is relatively expensive, so it is desirable to obtain an
image graph that is as complete as possible while rigorously matching and verifying a
minimal number of edges.

In addition, given an image collection, it is often unnecessary to discover a complete
description of the underlying image graph, as a much sparser graph contains sufficient
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Fig. 1. A visual path from Il Vittoriano to the inside of the Colosseum in our Forum dataset.
Each consecutive image pair exhibits spatial overlap. In an image graph, links between densely-
connected subgraphs are important for applications such as 3D reconstruction and visualization
as they contribute to a more complete scene and a more accurate 3D model.

information for many applications. For example, if the graph underlying a set of n im-
ages is complete (i.e., each image overlaps every other image), then a star graph (one
with n − 1 edges, each connecting one node to a central node) might be a sufficient
description of the graph for certain applications, as compared to exhaustively matching
all n choose 2 pairs of images. In the context of structure from motion (SfM), a sparse
graph is sometimes even more desirable than a complete description; for instance, Agar-
wal et al. take an image graph and apply a sparsification technique to derive a simpler
“skeletal” graph for efficiently reconstruction [1,8]. On the other hand, breaking the
graph into two separate connected components (CCs) is undesirable, as it can lead to
separate, disconnected models for SfM methods. As a motivating example, Figure 1
shows a “visual path” through a set of images of Rome (out of a collection of nearly
75K images) connecting two landmarks, the Il Vittoriano Monument and the Colos-
seum. While both of these landmarks are densely photographed, photos linking the two
are much more difficult to find, hence finding such connections is critical to connecting
these two monuments in a 3D model. This motivates our goal of discovering the large
CCs of an image collection as completely, and as efficiently, as possible.

We do this through a method that proposes edges to verify through feature matching
and spatial verification. If each edge verification step on an image pair successfully
finds that the pair indeed matches, then problem would be much easier—we would
need to test at most n − 1 edges to find a spanning forest for the image collection.
In practice, however, it is difficult to know in advance which pairs to test, as many
pairs of images do not match. Many state-of-the-art image matching systems [4,8,9]
use techniques based on image retrieval techniques (such as bag-of-words and inverted
files [10]) to determine likely matches, but these metrics are not always good predictors
of whether two images match. While several techniques have been proposed to improve
retrieval performance [11,12] based on the idea of refining the query and retrieve images
repeatedly, many of them introduce overhead at the retrieval stage since the similarities
have to be recomputed, which substantially increases the total running time.

Another source of difficulty comes from the fact that large-scale image datasets often
contain many “singleton” images, i.e., images that match no or very few other images,
such as a closeup of a pigeon, and verifications on such images are wasted. Even worse,
some near-singleton images contain confusing features that result in them being similar
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to other images under bag-of-words methods. Detecting such “bad” singleton images is
expensive because in the worst case we have to verify a query image against all other
images in the dataset to conclude whether the query image is indeed a singleton. Cur-
rently, most large-scale matching systems do not explicitly model such outlier images,
and hence waste computation time trying to match them.

Contributions. To address these problems, we develop an efficient and effective algo-
rithm called MatchMiner that applies to large-scale collections of images of scenes
to discover large CCs. MatchMiner works by intelligently maintaining a shortlist of
image pairs to match, and re-ranking this shortlist over time based on feedback from
successful and unsuccessful prior matches. We show that a novel algorithm based on
relevance feedback can be employed in MatchMiner to effectively re-rank image pairs
while introducing little overhead in the image retrieval process. This algorithm signif-
icantly improves the success rate of finding true matching pairs. To prevent singleton
images from appearing in the shortlists of other images, we also propose a simple yet
effective measure called rank distance to prune out false positives and to increase the
probability of success. Finally, we use an information-theoretic model of the problem
to choose edges that minimize a objective based on expected entropy given estimated
prior probabilities of matches based on visual similarities.

We demonstrate the effectiveness of MatchMiner on several image collections with
ground truth obtained by exhaustive matching, as well as larger collections with tens
or hundreds of thousands of images. Our experiments show that MatchMiner can effec-
tively identify large CCs in an image graph with a relatively small number of match-
ing operations, and that for large problems it can produce significantly better results
than current techniques, such as Image Webs [9], given the same budget of matches
performed.

2 Related Work

Several techniques have been proposed to match large-scale image collections. Proba-
bly the most related method is Image Webs [9], whose matching system has two phases.
The first phase proposes image pairs based on visual similarity using a standard bag-of-
visual-words model. Potential image pairs that straddle different connected components
(CCs) are given priority for verification. This phase results in a (hopefully large) set of
CCs. In the second phase, spectral graph theory is employed to increase the connec-
tivity within each CC. Our work differs in that we are mainly interested in finding as
complete a set of CCs as possible, as this is critical to many applications including
3D reconstruction. To the best of our knowledge, our work is the first to incorporate
practical relevance feedback methods in the domain of large-scale image matching.

Chum and Matas formulated the problem as one of clustering and presented a method
based on min-wise hashing to quickly generate cluster seeds (image pairs) whose sim-
ilarity is above a user-defined threshold [13]. These seeds are then spatially verified
to filter out false positives. To increase recall, they then grow these seeds using query
expansion [12]. One problem with their approach is that the quality of their final graph
structure highly depends on those initial seeds, and their method can easily miss impor-
tant connections between components of the image set.
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Structure within CCs is also important in many problems. Techniques such as skele-
tal graphs [1] and dominating sets [3] attempt to sparsify the graph while retaining
important structures. However, these techniques often require a (near) complete set of
edges within CCs given in advance, while our formulation of the problem aims at dis-
covering those CCs and therefore can be viewed as an initial step in such systems. Other
work takes a probabilistic approach to identifying important structures in a graph [2].

Large-scale matching is a key component in many city-scale 3D reconstruction sys-
tems [4,8]. For instance, Frahm et al. build a reconstruction on a single PC using GPUs
[4], leveraging GIST features and compact binary codes in a clustering algorithm for
very fast image matching. Iconic images in these clusters are then chosen and connected
between clusters. However, they sacrifice graph quality for efficiency, and thus they may
lose important connections between landmarks, breaking a scene up into several sepa-
rate connected components; our goal is to find not just “easy” clusters, but to connect
even weakly connected subsets of images, such as those shown in Figure 1.

Our technique is also related to recent image retrieval techniques based on bag-of-
visual-words models [11,12]. As in our work, some of these methods modify the im-
age query to either reduce the effect of confusing visual words or enhance the power
of relevant words. Recursive average query expansion [12] constructs a new query by
averaging verified results of the original query, i.e., a new query vector is formed us-
ing positive feedback. Incremental spatial re-ranking [11] automatically detects tf-idf
failure (too few features landing in the same visual words are geometrically consistent),
incrementally builds a statistical model of the query object, and learns relevant spatial
context to boost retrieval performance. Despite their effectiveness, most of these meth-
ods introduce significant overhead in the retrieval stage of large-scale image matching
since the similarities between the query and database images must be recomputed using
the updated query. This is especially problematic in our setting, where all images are
potential queries. We address this with a query modification technique that is extremely
efficient and can take into account negative information.

3 MatchMiner Algorithm

As mentioned in the introduction, we formulate the process of finding structure in a
large image collection as that of finding all of the large connected components (CCs)
of the underlying image graph. While this is not the only possible way to formulate the
matching problem, it fits with our goal of connecting up the images as best as possible,
so that later processing stages (e.g., of an SfM pipeline) can obtain as complete models
as possible. To that end, imagine that by some process we can obtain the “ground truth”
image graph (e.g., by exhaustively matching all pairs of images),1 and hence the ground
truth CCs. Our task is then to quickly discover these ground truth components (without
prior knowledge), by testing as few image pairs as possible. While we may only be able
to find an approximation of the ground truth CCs in a reasonable time, e.g., due to weak
edges that are difficult to discover, we want the approximate set of CCs we find to be as
complete as possible. More formally,

1 Note that this O(n2) process is intractable for very large image collections, which is why we
require approximate methods.
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Definition 1 (Spanning Structure Mining). Given an image set I = {I1, ..., In} and
a geometric verification predicate GV (Ii, Ij), the ground truth image graph Gg is
formed by creating a node for each image and by creating an edge between images
Ii and Ij if GV (Ii, Ij) holds for i �= j. We want to efficiently find all large connected
components of Gg, which we refer to as the spanning structure of Gg .

We define GV as a standard feature matching and geometric verification procedure,
involving SIFT matching [6] with approximate nearest neighbor search and a ratio test
for classifying true and false feature matches. These feature matches are then verified
using a RANSAC-based estimation of the fundamental or essential matrix, depending
on the availability of camera calibration information [7].

Our approach works by proposing sets of image pairs to match, based on visual sim-
ilarities and rank information accumulated as the algorithm proceeds. Initially, we use
a standard bag-of-visual-words approach to model visual similarity. We train a vocabu-
lary tree offline on 50,000 images of a single city to yield 1 million visual words. For
each image in the input collection I, its SIFT descriptors are assigned to the approx-
imately closest visual word. The image is then represented as a histogram of visual
words (a vector of length 1M), weighted using standard tf-idf weighting [10]. In this
paper, we use the same vocabulary tree for all experiments, and we use the dot product
on normalized vectors as our image similarity metric.

3.1 Algorithm Overview

Our image matching method, called MatchMiner, consists of two steps. In Step 1,
each image is issued as a query image, and highly ranked images are given priority
for verification. This step employs Rocchio’s relevance feedback [14] to improve the
quality of retrieval results. In Step 2, we re-rank image pairs for testing with a preference
for merging large CCs. We propose a rank distance to eliminate spurious image pairs,
and use visual similarity to estimate the probability that a match will succeed. Note
that in both steps, we skip verifying image pairs that are already in the same CC, as
well as image pairs that have already been tested. We follow the standard practice [8,9]
of setting a verification budget, i.e., the maximum number of image pairs that may be
tested; we use a budget of K×|I| (i.e., on average each image is matched to at most K
other images), and we terminate after the budget is exhausted, returning whatever CCs
are found. We now describe these two steps in detail.

3.2 Step 1: Finding Initial Connected Components

Initially each image forms its own connected component, and each image is issued as
a query to retrieve visually similar images. Over time, to maintain a high probability
of success in linking CCs, we update each query using a modified version of Rocchio’s
relevance feedback [14]. In Rocchio’s relevance feedback, a query vector Qt is modified
based on a shortlist of retrieved images. In our case, geometric verification (GV ) is
performed on the top k most similar images to a query, which partitions the k images
into a positive set P and a negative set N . These sets are used as feedback to create a
new virtual query vector Qt+1 (before normalization), based on the following formula,
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Top 3 images are to verify. Feedback, without GV 
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Fig. 2. Illustration of Step 1. The visual word distribution of the initial and modified query vectors
are shown on the left. Row 1 uses the original query vector, and rows 2 and 3 use queries with
feedback incorporated. The algorithm skips images already in the same CC of the query image,
such as the third image in row 2.

Qt+1 = Qt +
αt+1

|P|
∑

I∈P
I − βt+1

|N |
∑

I∈N
I (1)

where α and β are dampening factors to prevent topic drift, and I denotes original bag-
of-words vector for an image. The new query vector is then normalized and used to
retrieve a new set of relevant images. In our experience, setting α = β = 0.8 gave good
retrieval results. Unlike in most settings for Rocchio’s relevance feedback, we allow
negative weights on features, as this produced better results in our experiments.

Figure 2 illustrates an example of Step 1. The query image (purple) is first used to
retrieve a shortlist of images (Row 1). We verify the top 3 images in the shortlist (in dark
blue boxes) to get feedback. Here, the feedback indicates that purple circles are “noisy”
and therefore down-weighted in the next query. The new query vector is normalized,
and images are retrieved again (Row 2). We do not match images that are already in
the same CC; for example, we skip the third image in row 2. The query is again refined
according to feedback to retrieve more true matches in the shortlist. Note that as we keep
refining the query, the shortlist generally becomes cleaner, and in addition the algorithm
is able to find important features that are not in original query (the blue diamond in this
example). It is easy to see that in Step 1, the algorithm invokes GV at most Tk × |I|
times, where T is the number of rounds of relevance feedback.

There are several reasons why we use Rocchio’s relevance feedback to modify the
query. First, we find that it significantly improves accuracy even after one or two rounds
of relevance feedback, as new query vectors are created with a bias towards features
in P , and against features in N . Second, Rocchio’s relevance feedback is very effi-
cient. Note that the new query vector is a linear combination of the old query vector
and image vectors in the shortlist; moreover, the dot product is linear in the first argu-
ment: 〈ax + by, z〉 = a〈x, z〉 + b〈y, z〉, which means that we do not need to recom-
pute the similarity between the new query and image vectors from scratch. Instead, we
simply reuse precomputed dot products between images to compute the similarity be-
tween the new query and other image vectors, a very fast operation. Although geometric
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verification is the bottleneck of the whole system, we still desire an efficient re-ranking
scheme since it is a heavily used subroutine.

In summary, Step 1 performs T rounds of relevance feedback, where each round
considers the top k images in each image’s shortlist. T and k are chosen so that the
overall budget K × |I| is not exhausted. Step 1 returns an initial set of CCs and the
number of geometric verifications that have already been spent.

3.3 Step 2: Merging Connected Components

After Step 1, we have discovered a set of initial connected components, and have used
up some portion of the verification budget. As others have observed, we find that the
probability of geometric consistency of neighbors for a given image decreases quickly
with the rank of the neighbor in the shortlist, and so verification on image pairs proposed
solely based on visual similarity can frequently fail after a point; the verification budget
would not be used fruitfully if we continue to match such pairs. Therefore in Step 2, we
use a weighting function w(·) to re-rank the shortlists of each image, aiming to increase
the probability of success. Each image retrieves its top neighbor with highest weight,
and geometric verification is performed on such pairs until the verification budget is
exhausted. Again, we avoid matching images already in the same CC.

As our objective is to create large CCs, we prefer a weighting function that proposes
image pairs that can potentially merge two CCs into an even larger CC. We formalize
this intuition using the concept of entropy.

Minimizing Entropy. Let C denote a set of connected components, where each com-
ponent c ∈ C is a subset of images. The entropy of C, denoted H(C), is defined as:

H(C) = −
∑

c∈C
p(c) · log p(c), (2)

where p(c) is the probability that an image arbitrarily selected from the dataset belongs
to connected component c, i.e., p(c) = |c|

|I| .
When initially every image forms its own CC, the entropy of this set of components

is at its maximum, log |I|. If we are able to connect all images into one CC, then the
entropy is 0. As we merge CCs, the entropy strictly decreases monotonically until and
unless we find exactly all CCs in Gg (i.e., we find the ground truth CCs). Thus our task
can be re-formulated as minimizing H(C) given the verification budget.

Intuitively, if we merge two small CCs, the entropy H(C) will not decrease by much.
However, when two CCs are merged into a large one, H(C) will quickly decrease. We
now show this more formally. Consider two images that straddle two CCs and are ge-
ometrically consistent; we can thus merge these CCs, cx and cy. Let x = |cx| and
y = |cy|. The entropy H(C) upon merging cx and cy will decrease as ΔH(C) =
x
n log n

x +
y
n log n

y − x+y
n log n

x+y . Let z = x+y. It can be easily shown that ∂ΔH(C)
∂z ∝

1
n log z

z−y . Thus, as z goes to infinity, ∂ΔH(C)
∂z converges to 0, which means we reach a

local maxima of ΔH(C). This shows that if we fix a component cy , we should merge it
with the largest CC possible so as to obtain the largest decrease in H(C).
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(a) Illustration of entropy-
descent strategy of choosing
edges to verify. The algorithm
will pick edge a to verify, as it is
strong and spans large CCs.

...
Query I 2 6 203

...
Query J 1 4 741

(b) Motivation for the rank distance. The rank after
two rounds of relevance feedback is shown below
the image. Image J is proposed by similarity to im-
age I , but pruned by the rank distance.

Fig. 3. Illustration of Step 2. (a) Image pairs will be chosen to maximize the reduction in expected
entropy, except for (b) pairs with large rank distance that are pruned.

We can use this idea to define a weighting function w(·) as the expected reduction in
entropy, EI(J), for matching an image J to a query image I—the decrease in entropy
weighted by the probability of a successful merge:

wI(J) = EI(J) = pI(J) ·ΔH(C) (3)

where pI(J) is an estimated probability of success of the merge. We define this prob-
ability later in this section. Note that after Step 1, we need to choose pairs (I, J) very
carefully, as the probability of success for an arbitrary merge is low.

Figure 3(a) illustrates how a query image (the green node) chooses its next image to
verify. Black lines are already verified true matches and red dashed lines are candidate
pairs to verify; darker red indicates higher similarity. Although there are three strong
candidates, our method chooses edge a since its expected decrease in entropy is highest.

Eliminating Singleton Images. Large-scale, unstructured image datasets often contain
a significant number of singleton images (“distractor” or “noise” images) that match no
other image, such as a closeup of a random cobblestone or of water. Worse, we have
observed that these often contain confusing visual words that cause those images to
be relatively highly ranked in the shortlists of other images. We propose a simple yet
effective method to eliminate these images.

Consider two images I and J , and assume I is a “good” image, while J is an outlier
image. In Step 1, when we use J as a query, all of the verifications will fail. However,
each round of relevance feedback adds negative feedback pushing J away from these
initially similar (according to the bag-of-words model), yet non-matching images. After
T rounds, the refined query will be far away from those non-matching images. Let
RankI(J) denote the rank for image I using image J as a query in Step 1. Although
RankI(J) might be small because of noisy features present in J , RankJ(I) will often
be large since this is not a “true” match. Figure 3(b) illustrates this effect with a real
example from one of our datasets. Based on this observation, we propose as a distance
function the rank distance R(I, J) for a pair of images I and J , defined as the harmonic
mean of RankJ(I) and RankI(J):
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R(I, J) = 2RankI(J)RankJ(I)/(RankI(J) +RankJ(I)) (4)

If either of RankJ(I) or RankI(J) is large, R(I, J) is large, indicating that the pair
(I, J) may not be promising. Our experiments show that we can use this ranking to
prune many (near) singleton images effectively and increase the probability of perform-
ing successful matches.

Probability of Successful Match. We now define the probability of geometric con-
sistency pI(J) using similarity and rank information. Let SimNeighborNs

(I) denote
the set of the top Ns most visually similar neighbors to a query image I . We model
the likelihood of geometric consistency as a normal distribution N (0, σs). Similarly,
let RankNeighborNr

(Ii) denote a set of closest Nr neighbors to the query image Ii,
based on rank distance R(I, J). We wish to highly score images that are both visually
similar to the query image, and highly ranked in each other’s rank list; accordingly, we
define the estimated probability of geometric consistency as follows:

pI(J) ∝
{

1√
2πσs

e
− (s−1)2

2σs2 , J ∈ SimNeighborNs
(I) ∩ RankNeighborNr

(I)

0, otherwise
(5)

where s is the original similarity of image I and J .
We use the original queries (rather than modified queries) because we observe that

true matches can sometimes be pushed down by relevance feedback in the ranking.
However, since the original similarity function is very noisy, we need to filter out false
matches and have found the rank distance an effective way to do so.

4 Experiments

To evaluate the effectiveness of MatchMiner, we performed experiments on several
medium- and large-scale datasets. We downloaded five datasets from Flickr2: Acropo-
lis, Pantheon, St. Paul’s, Forum, and Washington DC, using keyword search. Images
in the Acropolis, Forum, and Washington DC datasets come with geotags, while the
other images do not. We sample two small datasets according to their geotags, forming
smaller datasets Forum 1 and Forum 2. The ground truth image graphs for Forum 1,
Forum 2, Acropolis, Pantheon, and St. Paul’s are computed by exhaustive geometric
verification on all image pairs, as these are small enough so that exhaustive matching is
tractable. Table 1 summarizes these datasets.

4.1 Effectiveness of Relevance Feedback

Step 1 of MatchMiner uses relevance feedback; to understand how much relevance feed-
back improves the accuracy, we first compare relevance feedback with dot product and
recursive average query expansion [12], using Average Precision (AP) @k. Each image
in a dataset is issued as a query and all retrieved images are ranked solely based on their

2 http://www.flickr.com

http://www.flickr.com
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Table 1. Datasets. Each row lists: Name, the name of the dataset; # Images, the number of images
in the dataset; CC1, the size of the largest connected component in the ground truth image graph
(if known); |Vg|, the number of images that are not singletons (i.e., in their own CC) in the ground
truth image graph; μI , the average number of features per image; and σI , the standard deviation
of number of features per image.

Name # Images CC1 |Vg| μI σI

Forum 1 1069 320 692 7741 6379
Forum 2 2911 1213 1937 6528 4957

Acropolis 2961 2105 2451 3969 2242
Pantheon 1123 855 947 10784 13309
St. Pauls 3000 2045 2372 11388 10191
Forum 74391 - - 7748 5752

DC 375531 - - 5379 5161

similarity to the query. Precision@k of a query Q is computed as |{I | GV (Q, I)}|/k,
and AP@k is obtained by averaging Precision@k for all queries. In these experiments,
each round of relevance feedback and recursive average query expansion examines the
top five images in the shortlist. We compare with average query expansion because it
is a state-of-the-art retrieval method with little overhead in the retrieval process. Figure
4 shows the AP@k on five datasets. Relevance feedback achieves significantly better
AP@k than dot product and recursive average query expansion for the top images in
the ranked lists. As we are mainly focused on low Ks, i.e., a relatively small verification
budget, we conclude that relevance feedback is quite suitable for Step 1. Note that two
rounds of relevance feedback produce excellent retrieval performance while consuming
a relatively small amount of the verification budget (at most 10 verifications per query),
and therefore we use two rounds for all further experiments.

4.2 Effectiveness of Rank Distance

Step 2 in MatchMiner is a combination of favoring merging large CCs and avoiding
matching singleton images. We first evaluate the effectiveness of rank distance in prun-
ing singleton images. Recall that in Step 2, for each image I in the dataset, we verify its
next k images after relevance feedback. In this experiment, we propose those k images
according to pI(J) and plot the average number of false edges in those k images that
are pruned by using rank distance, where Ns = Nr = 200. Figure 5 shows the results
on five datasets. By using rank distance, we can prune almost half of the images among
k images without invoking actual verification. This means at least half of the top k im-
ages in Ns of Step 2 are false matches to the query, but they will be pruned by looking
at Nr, which can give a large savings and increase the probability that we encounter an
important edge between two CCs. On all of our datasets, the rate of pruning true edges
stays consistently below 0.1%, i.e., the rank distance rarely makes mistakes.

4.3 Evaluation Metric

In order to evaluate our results, we need some measure of how similar two sets of con-
nected components are. For this we use normalized mutual information [15], a popular
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Fig. 5. Avg. number of false edges pruned by rank distance in the k images considered in Step 2

similarity measurement for clustering algorithms; we adopt this to measure similarity
of two connected component sets.

Let C∗ denote the set of CCs in the ground truth graph Gg and C the spanning struc-
ture to compare to the ground truth. We define the mutual information of the two sets
as follows:

MI(C; C∗) = H(C)−H(C|C∗) =
∑

c∈C,c∗∈C∗
p(c, c∗) · log p(c, c∗)

p(c) · p(c∗) (6)

where p(c) and p(c∗) are the same probabilities defined in Equation 2, and p(c, c∗) is
the joint probability that the arbitrarily selected image belongs to both c and c∗, i.e.,
p(c, c∗) = |c∩c∗|

|I| . In our experiments, we use the normalized mutual information MI:

MI(C; C∗) = MI(C; C∗)/max(H(C), H(C∗)) (7)
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Table 2. Mining results on five datasets.

(a) K = 20.

Dataset Algo. CC1 |Vc| MI

Forum 1
Image Webs 105 563 0.80
MatchMiner 266 598 0.90

Forum 2
Image Webs 728 1670 0.80
MatchMiner 908 1744 0.85

Acropolis
Image Webs 1894 2239 0.79
MatchMiner 1948 2305 0.83

Pantheon
Image Webs 639 847 0.59
MatchMiner 765 869 0.74

St. Pauls
Image Webs 1816 2145 0.80
MatchMiner 1883 2187 0.84

(b) K = 30.

Dataset Algo. CC1 |Vc| MI

Forum 1
Image Webs 180 606 0.85
MatchMiner 271 622 0.91

Forum 2
Image Webs 788 1745 0.83
MatchMiner 937 1761 0.87

Acropolis
Image Webs 1951 2307 0.84
MatchMiner 1978 2324 0.86

Pantheon
Image Webs 659 855 0.62
MatchMiner 788 900 0.80

St. Pauls
Image Webs 1845 2179 0.82
MatchMiner 1934 2248 0.89

It is easy to verify that MI(C; C∗) ranges from 0 to 1. MI(C; C∗) = 1 if we find the
exact same CCs as the ground truth, and MI(C; C∗) = 0 if two sets are independent.
In general, a higher score indicates a more complete set of connected components. It
is easy to verify that minimizing H(C) (as described in Section 3.3) is equivalent to
maximizing MI and therefore Step 2 of MatchMiner explicitly maximizes MI.

4.4 Mining Performance Comparison

To evaluate our results compared to ground truth, we perform several sets of exper-
iments on different Ks (defining different verification budgets). We compare our ap-
proach to Image Webs [9]; we only compare our results with the output of their Phase
1 because their Phase 2 aims at increasing connectivity within connected components,
which cannot improve MI and the spanning structure of the graph.

Tables 2(a) and 2(b) show results for K = 20 and 30, respectively. Each table shows
the size of the largest connected component (CC1), the number of non-singleton im-
ages in the resulting spanning structure (|Vc|), and the normalized mutual information
(MI) achieved compared to the ground truth. All of the five datasets have a single large
connected component that captures the majority of the scene, so CC1 is another impor-
tant measure of success. We allow two rounds of relevance feedback in Step 1 (T = 2),
and we set Ns = Nd = 200.

The results suggest MatchMiner significantly outperforms Image Webs at our task.
Note that when K = 20, MatchMiner already outperforms Image Webs when K = 30
on most datasets, which demonstrates the effectiveness of our approach.

4.5 Mining Results on Large-scale Datasets

We implemented a distributed version of MatchMiner on a shared cluster with 53 nodes.
Each node in the cluster has 2 quad-core Xeon processors running at 2.66 GHz with 16
GB memory. Experiments are performed on two large datasets, Forum and Washington
DC, and results are summarized in Table 3. Since the ground truth graphs for these
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Table 3. Results for large datasets. K = 20 for all experiments. CC1 and CC2 denote the size
of the largest and second largest connected component, respectively. |Vc| is the number of non-
singleton images. Components shows the distribution of large connected components. H(C) is the
entropy of the mining result. Time is the total running time of the system (not including extracting
SIFT features and learning bag-of-visual-words vectors).

Dataset Algorithm CC1 CC2 |Vc| Components
H(C) Time

= 2 = 3 ≥ 4

Forum
Image Webs 6944 6649 40689 2919 860 1011 11.92 1hr40min
MatchMiner 13871 3088 40604 2753 812 944 11.62 1hr39min

Washington DC
Image Webs 11249 3772 146035 19526 5083 6386 16.76 6hr13min
MatchMiner 16922 2804 140273 17276 4554 5865 16.64 6hr21min

Fig. 6. Visualization of largest connected component of the image graph for Forum

two datasets are intractable to compute, we use H(C) instead of MI to measure the
quality of a set of CCs, where lower H(C) indicates a higher MI. Again, MatchMiner
achieves significantly better results than Image Webs. These experiments demonstrate
that MatchMiner is effective at finding large-scale spanning structure, and when paral-
lelized can find such structure very efficiently.

The distributions of the number of CCs of different sizes are also shown in Table 3.
Image Webs tends to find more small CCs (e.g., size 2 and 3). However, those small CCs
are not useful in most applications based on image graphs and we are mainly interested
in large CCs. Comparing the numbers of large CCs, we can see MatchMiner merges
more CCs and therefore the number of large CCs is much smaller than that of Image
Webs. This shows that our information-theoretic framework can prevent the system be-
ing trapped by small uninformative CCs, and that the verification budget is used to match
potential image pairs that can merge large CCs, guided by the decrease of entropy.
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Figure 6 shows the largest CC of the Forum dataset produced by MatchMiner, ren-
dered on a map based on geotags and with sample images shown; discovered edges are
shown as line segments. MatchMiner successfully captures links spanning several land-
marks, including Il Vittoriano, the Roman Forum, and the Colosseum. The algorithm
also finds links between daytime and nighttime components of the Colosseum.

5 Conclusion

In this paper, we formulate the problem of discovering the structure of an image graph as
a mining task called spanning structure mining, and we describe our novel MatchMiner
algorithm that solves this problem very efficiently as compared to the state of the art. In
future work, we would like to further improve our algorithms, especially focusing on
finding noise images and eliminating them even earlier in the process.
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