LNCS Homepage
ContentsAuthor IndexSearch

Lighting Estimation in Indoor Environments from Low-Quality Images

Natalia Neverova, Damien Muselet, and Alain Trémeau

Laboratoire Hubert Curien – UMR CNRS 5516, University Jean Monnet, Rue du Professeur Benoît Lauras 18, 42000, Saint-Étienne, France
natalia.neverova@etu.univ-st-etienne.fr
damien.muselet@univ-st-etienne.fr
alain.tremeau@univ-st-etienne.fr
http://laboratoirehubertcurien.fr

Abstract. Lighting conditions estimation is a crucial point in many applications. In this paper, we show that combining color images with corresponding depth maps (provided by modern depth sensors) allows to improve estimation of positions and colors of multiple lights in a scene. Since usually such devices provide low-quality images, for many steps of our framework we propose alternatives to classical algorithms that fail when the image quality is low. Our approach consists in decomposing an original image into specular shading, diffuse shading and albedo. The two shading images are used to render different versions of the original image by changing the light configuration. Then, using an optimization process, we find the lighting conditions allowing to minimize the difference between the original image and the rendered one.

Keywords: light estimation, depth sensor, color constancy

LNCS 7584, p. 380 ff.

Full article in PDF | BibTeX


lncs@springer.com
© Springer-Verlag Berlin Heidelberg 2012