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Abstract

In this paper we present an automatic heart segmenta-
tion system for helping the diagnosis of the coronary artery
diseases (CAD). The goal is to visualize the heart from a
cardiac CT image with pulmonary veins, pulmonary arter-
ies and left atrial appendage removed so that doctors can
clearly see major coronary artery trees, aorta and bypass
arteries if exist. The system combines model-based detec-
tion framwork with data-driven post-refinements to create
voxel-based heart mask for the visualization. The marginal
space learning [6] algorithm is used to detect mesh or land-
mark models of different heart anatomies in the CT image.
Guided by such detected models, local data-driven refine-
ments are added to produce precise boundaries of the heart
mask. The system is fully automatic and can process a 3D
cardiac CT volume within 5 seconds.

1. Introduction
Coronary Artery Disease (CAD) or Coronary Heart Dis-

ease (CHD) is the leading cause of death in the world. It
is caused by accumulation of plaque in coronary arteries
(CA). Eventually such plaque blocks or reduces blood flow
to heart muscles. Deprived of oxygen, myocardium is dam-
aged and other heart diseases develop. The early symptom
for CAD/CHD is usually chest pain which can be easily
mistaken for other less serious diseases until the patients
experience a heart attack.

Computed tomography (CT) is often used for diagnosis
and treatment planing for CAD/CHD. In cardiac CT im-
ages, not only the heart but also surrounding anatomical
structures are imaged and can block the direct view of the
heart in a 3D visualization. In the past, algorithms were
developed to isolate the heart from surrounding structures

like lungs, spine and sternum [9] [2]. However, the heart
structures like the Pulmonary Arteries (PA), the Pulmonary
Veins (PV) and the Left Atrial Appendage (LAA) still par-
tially occlude the coronary arteries (mainly the left part). It
is desirable to remove these three structures from a cardiac
CT image visualization so that physicians can easily see the
coronary arteries. Figure 1 (a) shows a raw CT scan image.
Ribs, sternum, and other structures totally block any view
of the heart. It is impossible for physicians to see any CA
for diagnosis. Figure 1 (b) is the previous heart isolation
result [9]. It can automatically isolate the heart from sur-
rounding structures by detecting the pericardial mesh of the
heart. With this result, physicians can easily see many de-
tailed heart structures. However the LAA, the PA and the
PV still block the left coronary artery (LCA). Figure 1 (c)
is the result of our algorithm described in this paper. The
LAA, the PA and the PV are removed and the LCA can be
clearly seen without any occlusion. Such a 3D view can
greatly help physicians to perform diagnosis of CAD/CHD.

Since these structures are very close to the cornary artery
tree and they are all connected to heart chambers we want
to keep, pure data-driven algorithms such as region growing
cannot segment them cleanly without leaking into nearby
chambers or the aorta. While model-based segmentation al-
gorithms, such as the marginal space learning [6], can reli-
ably detect the anatomies based on mesh models. However,
there are some limitations. First it works well for anatomies
with relatively less variations, like the four chambers, but
not highly variable structures like the LAA, and the PA.
They can hardly be modeled by a single-part mesh model.
Second, note that standard local refinements based on a sta-
tistical shape model [1] and mesh smoothing algorithms [3]
[4] are used by the algorithm to generate a smoothed mesh
result. However such smoothed meshes, when converted to
voxel masks, may not cover all the voxels of the detected
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(a) (b) (c)
Figure 1. Heart isolation visualization. (a) The original CT scan. Note that bones blocked any direct view of the heart. (b) The result
of the previous algorithm which only isolates the whole heart. Still, the pulmonary artery (PA), the pulmonary veins (PV) and the left
atrial appendage (LAA) occlude the left coronary artery (LCA). (c) The result of our system. The PA, the PV and the LAA are removed
automatically and the LCA is easily seen. Further more, the plaques that block the LCA can be easily identified. Note that in this case,
there are two bypass arteries which are reliably kept intact by the algorithm.

(a) (b) (c)
Figure 2. Directly applying the model-based machine-learning algorithm from [6] on PA root usually result in a thin layer of PA left in
the image (b), even though the mesh looks accurate and smooth in (a). That’s because the mesh model’s resolution cannot capture the
voxel-level details of the shape. (c) While our algorithm can create a clean mask of PA for removal.

anatomy and generate visible artifacts (Figure 2).

To overcome the mentioned problems, we combine a lo-
cal region growing algorithm with the global shape model
to solve the PA, the PV and the LAA segmentation prob-
lems. The idea is to use a machine learning algorithm to
learn a global shape model, either mesh based or fiducial
control point based, to locate the approximate location and
orientation of the object. Then we use constrained local in-
tensity based region growing algorithms to refine the shape
and generate a detailed mask. In order to avoid any removal
of the CA or the aorta which are desired to be kept, we also
use a model-based algorithm to create “protection” zones
for them where no removal is allowed to such protected ob-
jects. The result is a fully-automatic, efficient and clean re-
moval of the PA, the PV, and the LAA for 3D visualization
of the CA.

2. Methods

Before the segmentation of the PA, the PV and the LAA,
we first segment the whole heart using algorithms described
in [9]. The result is a pericardial mesh containing four heart
chambers, part of the aorta, the PA, the PV and the LAA
as well as the CA. Then the aorta root’s location is detected
using algorithms described in [7]. We also detected the left
atrium using [5]. These structures usually can be reliably
detected since they have relatively less shape variations and
clean boundaries. Furthermore, the segmentation results of
these structures can then be used to constrain the segmenta-
tion of the PA, the PV and the LAA’s locations.

For the PA, the PV and the LAA, we use slightly differ-
ent segmentation algorithms for each. However, the frame-
works of all these algorithms are similar: global shape-
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(a) (b)
Figure 3. PA model: (a) the mesh and five fiducial point model. (b) the statistical shape model for detecting the fiducial points (bifurcation,
left 1 and 2, right 1 and 2). Based on 120 manually labeled data, we select nine points from the PA trunk mesh and combine them together
with the five PA fiducial points to create a statistical shape model.

model detected by the marginal space learning algorithm [6]
and local refinement based on the statistics of intensities.

2.1. Globe Shape Segmentation

2.1.1 The Pulmonary Artery Model

The PA trunk root: the portion of the PA from the right
ventricle (RV) to the bifurcation, is modeled as a tubular
mesh. From the bifurcation, it is difficult to approximate the
shape with a tube. In this case, we use five fiducial control
points: one at the bifurcation, two at the left PA branch and
two at the right PA branch as shown in Figure 3 (a). We first
describe how the PA trunk mesh is detected.

For the PA trunk mesh, we use the segmentation algo-
rithm of [6]. The shape model, the bounding box detector
and the boundary detector are trained with 320 manually
annotated volume data. The detector returns the probability
of the image I given PA trunk bounding box at the combi-
nation c of location, orientation and scale:

P (I|c) = P (I|x, y, z, α, β, γ, s) (1)

where (x, y, z) is the location of the bounding box,
(α, β, γ) is the oritentation of the bounding box and (s) is
the scale. The final boudning box is the one that maximize
the probability of:

P (c|I) = P (I|c)P (c)/P (I) (2)

P(I) is defined as a constant. The prior probability of
P (c) can be learned from annotated data. We define it as
the range of the location, the orientation and the scale of all
PA trunk bounding boxes we have seen in annotated training
data. If a bounding box is within the range, its P (c) = 1,
otherwise its P (c) = 0. However, with different scanning
protocols, the arbitrary location and orientation of the PA
trunk in an image can vary a lot. Thus the range is very

large and it allows the bounding box to be almost anywhere
with any orientations. Then during the detection, some false
positives happened. For example, the aorta root is detected
as the PA trunk since they look similar to each other.

To reduce such errors, we use the detected AO root and
LA bounding boxes to constrain the detection of the PA
trunk bounding box. We modify the equation 2 to:

P (cPA, cAO, cLA|I) = P (cPA|cAO, cLA, I))P (cAO, cLA|I)
(3)

Since the AO and the LA are already detected,
P (cAO, cLA|I) is constant. And the problem becomes max-
imizing the probability of:

P (cPA|cAO, cLA, I) (4)

with Bayes’ theorem, it is equal to maximizing the like-
lihood of:

P (I|cPA, cAO, cLA)P (cPA, cAO, cLA) (5)

Again, the AO and the PA are already detected and fixed,
the problem can be further simplified as maximizing the
probability of:

P (I|cPA, cAO, cLA)P (cPA|cAO, cLA) (6)

The likelihood of P (I|cPA, cAO, cLA) is calculated by
the bounding box detectors for the three anatomies. The
conditional prior of P (cPA|cAO, cLA) is defined as the con-
straint by the detected aorta (AO) and LA bounding boxes.
It is learned from training database with annotated AO, LA
and PA trunk bounding boxes. Different from the prior we
mentioned above, this constraint is defined as the relative
location, orientation and scale range of the PA to the LA
and the AO. This relative constraint gives us a much tighter
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(a) (b) (c) (d)
Figure 4. Voxel-based refinement for the PA, the PV, and the LAA. (a) Before removal, the bypass arteries are highlighted by the red circle.
(b) the PA and the vena cava are removed by region growing while bypass right adjacent to PA is kept intact. (c) before removal, we can
see the small isolated chambers of the LAA very close to the coronary arteries highlighted by the red circle. (d) the LAA, the PA and the
PV are removed cleanly while the CA is intact.

range and thus eliminated a lot of false positives during the
detection. The result then is much more robust.

After the bounding box is detected, a statistical shape
model is fit within it. Five fiducial points on the left and
right PA branches are trained with 120 manually annotated
volumes. The detection of the fiducial points is a mixture
of a statistical shape model and individual fiducial point de-
tectors using the marginal space learning (MSL) algorithm
[6]. The reason for this mixture is that in many images, the
PA fiducial points’ locations are not inside, or are very close
to the image borders. Thus, the MSL-based bounding box
detector may fail in these cases since it relies on image fea-
tures which are not available outside the image. However,
the statistical shape model can handle this out-of-boundary
situations well. In our method, we build a statistical shape
model [1] containing nine PA trunk points selected from the
PA trunk mesh and the five PA fiducial points: bifurcation,
left 1 and 2, right 1 and 2 as shown in Figure 3 (b). When
the PA trunk is detected, we extract the nine PA trunk points
from the detected mesh. Then we use the statistical shape
model to estimate the optimal location of the five PA fidu-
cial points given the nine PA trunk points’ locations. The
statistical shape model can estimate the location of a fiducial
point even it is outside the volume. We select only nine PA
trunk points instead of all the mesh points because we want
the statistical shape model to capture variations for both the
PA trunk and the left and right PA branches in a balanced
way. If all the PA trunk mesh points are included, the statis-
tical shape model will be dominated by the shape variations
of the PA trunk, and makes the estimation of the left and
right PA less accurate. We found that with nine PA trunk
mesh points the algorithm works very well for our purpose.
Next we use the learned MSL detectors to refine each of the
five estimated PA fiducial points. The MSL detectors will
only search a small neighborhood around the current esti-
mated locations thus it is reliable and fast. If MSL detectors
failed because a fiducial point is close to or out of the im-

age border, the statistical shape model result will be used as
final detection result. Otherwise the MSL detector’s result
will be used.

2.1.2 The Pulmonary Vein Model

The PV’s shape varies too much to be represented by a sin-
gle mesh model. Instead, we use two fiducial points defined
on the detected left atrium (LA) mesh model to locate the
root of the left and the right pulmonary veins. In practice
they are defined as two specified vertices on the LA mesh.
The detailed mask for PV’s is handled by a region growing
method described in the next section.

2.1.3 The Left Atrial Appendage Model

We model the LAA using the same mesh model as a heart
chamber. The mesh is designed to capture the outer bound-
ary of LAA. However the LAA’s shape varies much more
than any heart chambers both for its topology and size. This
mesh model usually cannot capture the exact boundary of a
LAA. Instead, we only use this model to locate the LAA’s
bounding box so that the exact boundary can be segmented
using the intensity based refinement described in the next
section.

2.2. Local Voxel-based Refinement

As we have stated before, the global shape model usually
cannot generate the exact voxel mask for the PA, PV and
LAA. A local refinement is necessary for our heart isola-
tion application. For the PA, PV and LAA, we use different
refinement strategies. However the goals are the same: to
find clear boundaries without cutting into any of the CA or
bypass.
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(a) (b) (c)
Figure 5. LAA removal: (a) With LAA mesh model only: some LCA is cut (blue arrow) while some LAA is not removed (red arrow). (b)
First pass of connected component analysis: only the largest connected region in the bounding box of LAA mesh is removed. LCA is intact
(blue arrow) however still some small isolated regions of LAA remain (red arrow). (c) Second pass of connected component analysis: run
in the whole image and keep the largest piece while any small isolated pieces within the LAA bounding box are removed. The result is a
clean removal of all LAA voxels.

2.2.1 The Pulmonary Artery

For the PA, the global shape model contains two parts: the
PA trunk mesh and the five fiducial points. For the mesh, we
first close its openings and then mask out any voxels inside
the mesh. As shown in Figure 2, usually a thin layer of the
PA trunk still remains due to the mesh smoothing. We then
use the region growing algorithm to dilate the mask out-
ward for 2-3 millimeters depending on the image resolution.
The region growing algorithm’s threshold is determined by
the mean and standard deviation of the voxels which are
already in the mask. With such statistics, the region grow-
ing can work for images with or without contrast agent in
the PA to successfully remove the thin layer left by the PA
trunk mesh. For the left PA, right PA and the PA bifurca-
tion regions, we start region growing from each of the five
fiducial points. In this step, the range for region growing is
limited to 15mm since the PA fiducial points are defined as
less than 15mm apart from each other. The region growing
from the fiducial points thus can cover all the voxels of the
PA bifurcation and the two branches. However, it tends to
leak into surrounding objects as it only relies on the local in-
formation, especially to nearby bypass arteries or LCA. To
prevent such “leaks” and protect important structures, we
use a model-based method which will be described later.

2.2.2 The Pulmonary Vein

For the PV, we apply the same region growing algorithm
from the two root fiducial points of left and right PV as
for the PA fiducial points. The intensity threshold is based
on the statistics of voxel intensities within the detected LA
mesh model. To prevent leakage into nearby structures, we
limit the growing range to 25mm.

2.2.3 The Left Atrial Appendage

The LAA is more complex. First, the LAA mesh model
only gives an approximate boundary: it may not cover the
whole LAA and it may include some LCA or other struc-
tures. This is due to the high variation of the LAA’s shape.
Second, there usually are many small chambers in the LAA
which make the LAA not look like a single connected re-
gion in the image. To deal with these challenges, we design
an algorithm composed with model-based mesh detection
and connected component analysis (CCA). The algorithm
consists of 3 steps:

1. The LAA mesh is detected. It gives us an initial es-
timation of the LAA’s location and shape. Then we
create a bounding box slightly larger than the mesh
to make sure we cover the whole LAA regions as the
LAA mesh may be smaller than the exact LAA region.

2. The first CCA pass is run within the bounding box and
the largest connected region found is removed. We
assume it is the largest chamber of the LAA. How-
ever smaller isolated chambers still remain and they
are difficult to be separated from LCA pieces within
the bounding box.

3. The second CCA pass is run on the whole image. The
LCA pieces in the LAA bounding box in this pass
should be connected to the whole LCA tree and even-
tually to the aorta and LV. Thus they should form the
largest connected region. While the remaining LAA
pieces will form smaller isolated regions. We then
remove any such small regions only within the LAA
bounding box.

This three-step algorithm is illustrated in Figure 5 and
as it shows, the algorithm can successfully generate a clean
mask of the LAA.
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(a) (b) (c)
Figure 6. Protection of vessels while removing the PA. (a) One case where bypass is deeply embedded in the PA as shown with the red
circles. (b) Region growing constrained by vessel classification can reliably remove any voxels belong to the PA while keep the bypass
arteries’ voxels untouched. Also the aorta is protected by segmentation. (c) 3D visualization of the case, the bypass arteries are intact and
clearly visible for physicians.

2.3. Chamber and Vessel Protection

Sometimes pieces of the important structures such as the
AO, the LA or the CA are removed by the leakage of the re-
gion growing algorithms because of similar voxel intensities
of them to the PA, the PV or the LAA. To prevent this, we
introduce several measures to protect these structures. First
we use the segmentation results of the aorta and the LA to
mask them as “not possible to grow”. The region growing
algorithms for the PV and PA and the connected component
analysis for the LAA then will ignore any such regions. It is
more difficult to protect the CA and the bypass arteries since
they are small and usually very close to the PA, the PV and
the LAA. Furthermore, we do not have a clean mask of the
CA tree as we have for the AO and the LA. Here we use a
machine-learning based vessel protection algorithm.

As described in [8], the idea is to train a voxel classifier
based on image context to tell the probability of the voxel
being in a vessel. This algorithm is capable of quickly clas-
sifying a voxel to be vessel or not by applying a threshold
to the returned vessel probability. We found that a thresh-
old equal to 75% works well for our purpose. However,
there would be a lot of waste of computation power if we
classified all voxels in an image. Instead, we confine the
classification to only those voxels around the PA trunk, the
LAA and the PV where cutting of the CA or bypass arteries
by the region-growing or CCA algorithms could happen.

For arteries around the PA trunk, any voxels within 3mm
to the PA trunk mesh will be classified for vessel. For re-
gions around the LAA and the PV, usually only the LCA
maybe cut. In order to efficiently identify the LCA region
around LAA and PV, we build a similar fiducial point model
as the PA trunk: it contains the left coronary ostium point,
the point where left main (LM) coronary artery bifurcated
into LAD and LCX, 20 control points along LCX and 20
selected points from the LA mesh. Then we train a statis-
tical shape model for these 42 points based on a manually

labeled training database. During the detection, the 20 LA
points from the detected LA mesh, the detected left coro-
nary ostium and the bifurcation point (using [7]) are used
to estimate the positions of the 20 LCX points based on the
learned statistical model. Then we run vessel classification
around the region of this estimated LCA control points.

In our tests, the vessel classification in the regions de-
scribed above takes only 0.02 seconds with a 4-core Xeon
2.53GHz CPU. After the vessel classification, we can cre-
ate a vessel protection mask. This vessel protection method
can preserve LCA, RCA and bypass very well in our appli-
cation, as shown in Figure 6.

3. Test Results
The goal of the algorithm is to remove most of the LAA,

PA and PV so that the coronary arteries and bypass can be
clearly seen in 3D visualization. The removal should not
touch any coronary arteries or bypass arteries. The algo-
rithm is tested on a database containing around 120 cardiac
CT images and most of them are bypass cases. Then the re-
sult is visually examined by experienced testers and a score
of 1-5 is given for each case:

1. Major CA cut or bypass cut, important structures re-
moved, considered as failed

2. Large piece of the PA, the PV or the LAA may not be
removed but not blocking the CA, some minor shave
or cut on the CA or the bypass arteries, considered as
acceptable

3. The PA, the PV and the LAA are largely removed with
only small pieces left, no cut on CA or bypass, consid-
ered as good

4. Only very little of the PA, the PV or the LAA voxels
left, no cut on CA or bypass, considered as very good
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(a) (b) (c)
Figure 7. Some results of our algorithm. (a) and (b) are normal cases and (c) is a bypass cases.

Table 1. Testing score of our algorithm over test dataset. Score 1 is failed, 2 is acceptable, 3 is good, 4 is very good and 5 is perfect. Our
algorithm achieved an average score of 3.73.

Score 1 2 3 4 5
Percentage 0.00% 13.33% 13.33% 60.00% 13.33%

5. Clean mask of the heart with the PA, the PV and the
LAA totally removed, no CA or bypass cut. Perfect

A score of 3 is thought to be useful, a score of 4 is very
good and 5 is perfect. Anything less than 2 is not useful
and thought to be failed. Our algorithm’s average score is
3.73 and there is no failed case. The distribution of scores is
shown in Table 1. Some examples of our result images are
shown in Figure 7. We tested the speed on 80 cardiac CT
scans. The size of the scans are from 512 × 512 × 419 to
512×512×667. Resolution of the scans is around 0.4mm×
0.4mm× 0.4mm. The longest processing time is less than
5 seconds with a 2.53GHz Xeon E5630 CPU.

4. Conclusion

In this paper we presented an algorithm that can reliably
remove the PA, the PV and the LAA for 3D visualization
of coronary arteries for physicians. The system combines
global shape model based on machine learning algorithms
with local intensity based region growing to segment the
structures in voxels. We also provide important structure
protection mechanisms to make sure no coronary or bypass
arteries are cut during the removal. The system is fully au-
tomatic. The test results demonstrate that this algorithm can
achieve the goal well, and thus is useful for CAD/CHD di-
agnosis and treatment planning.

References
[1] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Ac-

tive shape models—Their training and application. Computer
Vision and Image Understanding, 61(1):38–59, 1995.

[2] G. Funka-Lea, Y. Boykov, C. Florin, M.-P. Jolly, R. Moreau-
Gobard, R. Ramaraj, and D. Rinck. Automatic heart isolation
for CT coronary visualization using graph-cuts. In Proc. IEEE
Int’l Sym. Biomedical Imaging, pages 614–617, 2006.

[3] G. Taubin. Curve and surface smoothing without shrinkage.
In Proc. Int’l Conf. Computer Vision, pages 852–857, 1995.

[4] G. Taubin. Optimal surface smoothing as filter design. In
Proc. European Conf. Computer Vision, pages 283–292, 1996.

[5] Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Co-
maniciu. Fast automatic heart chamber segmentation from 3D
CT data using marginal space learning and steerable features.
In Proc. Int’l Conf. Computer Vision, 2007.

[6] Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Co-
maniciu. Four-chamber heart modeling and automatic seg-
mentation for 3D cardiac CT volumes using marginal space
learning and steerable features. IEEE Trans. Medical Imag-
ing, 27(11):1668–1681, 2008.

[7] Y. Zheng, M. John, R. Liao, J. Boese, U. Kirschstein,
B. Georgescu, S. K. Zhou, J. Kempfert, T. Walther, G. Brock-
mann, and D. Comaniciu. Automatic aorta segmentation and
valve landmark detection in C-arm CT: Application to aortic
valve implantation. In Proc. Int’l Conf. Medical Image Com-
puting and Computer Assisted Intervention, pages 1–8, 2010.

[8] Y. Zheng, M. Loziczonek, B. Georgescu, S. K. Zhou, F. Vega-
Higuera, and D. Comaniciu. Machine learning based vessel-
ness measurement for coronary artery segmentation in cardiac
CT volumes. In Proc. of SPIE Medical Imaging, pages 1–12,
2011.

[9] Y. Zheng, F. Vega-Higuera, S. K. Zhou, and D. Comaniciu.
Fast and automatic heart isolation in 3D CT volumes: Opti-
mal shape initialization. In Proc. Int’l Workshop on Machine
Learning in Medical Imaging (In conjunction with MICCAI),
2010.

30


