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Abstract

In this paper, we propose an active 3D shape acquisition
method based on photometric stereo using smartphone’s
camera and flash. A pair of smartphones collaborates as
the master and slave, in which the slave projects illumina-
tion from different locations while the master captures the
images and processes photometric stereo algorithm to re-
construct 3D shape. In order to reduce the error, the smart-
phone’s camera is calibrated to overcome the effect of lens
distortion and nonlinear camera sensor response. We ap-
ply SURF feature matching and five-point algorithm to esti-
mate the relative pose between the master and slave smart-
phones. Then the lighting direction is estimated to run pho-
tometric stereo algorithm. All procedures are implemented
on an off-the-shelf smartphone. Experimental result shows
that the proposed system enables us to use smartphone as
a 3D shape capturing device with low cost and reasonable
quality.

1. Introduction

Recent years have witnessed the explosive growth of
3D multimedia industry which leverage contemporary 3D
imaging technology. Common users can easily access im-
mersive 3D visual media through 3D cinema and 3D TV.
In computer vision and computer graphics, numerous tech-
niques have been developed to create 3D multimedia con-
tents by capturing 3D shape and motion of existing object.
However, it is still hard for common users to create 3D con-
tents without using expensive devices.

Another trend in IT industry is the wide availability of
high-performance smartphones, e.g. iPhone and Galaxy S.
Modern smartphone is a visual computing powerhouse. It
has a high speed CPU, high resolution camera, high qual-
ity color display, 3D graphic processor, DSP for image
and video processing, and several sensors including GPS,
compass, and acceleration. In addition to hardware perfor-
mance, a variety of multimedia applications have been de-

veloped on iOS and Android OS, and the demand for new
ones is continuously increasing.

It is expected that multimedia applications based on 3D
imaging technology is the next mainstream in the near fu-
ture. In this paper, the core technology of 3D imaging
on a mobile device is tackled using smartphone as a plat-
form. Conventional methods of 3D shape acquisition on
a smartphone are mostly based on the passive techniques.
Lee et al. proposed a 3D shape acquisition method based
on shape from silhouette [8]. However, this method needs
accurate foreground/background segmentation. Hartl et al.
reconstructed 3D shape of small object on mobile phone
using voxel carving technique [6]. Note that both shape
from silhouette and voxel carving have difficulty in recon-
structing concave shape. Arth et al. proposed a localiza-
tion algorithm using mobile device to reconstruct 3D envi-
ronment [1]. Pan et al. achieved scene reconstruction on
a mobile phone from panoramic images using multi-view
stereo [10]. However, these methods do not reconstruct
dense 3D surface.

Unlike passive techniques, there has been few works on
3D shape acquisition on a mobile device using active tech-
niques. Higo et al. proposed a hand-held 3D camera sys-
tem based on photometric stereo and multi-view stereo [7].
Since it involves a lot of image acquisition and huge amount
of computation, it cannot be easily implemented on a mo-
bile device. Schindler obtained 3D facial shape using com-
puter screen’s lighting which is extended to a mobile phone
using smartphone’s screen [13]. Even though this method
can obtain 3D facial shape rapidly, it often generates inac-
curate result due to low intensity of screen illumination. In
general, active techniques provide more accurate and dense
shape than passive techniques. However, they need addi-
tional devices such as beam projector (structured lighting
technique) or illumination (shape from photometric stereo).

In this paper, we propose an active 3D shape acquisition
system on mobile smartphone. By observing the function-
ality of smartphone’s camera and LED flash, photometric
stereo is employed in our approach. Note that photometric
stereo technique is known to produce 3D shape with high
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Figure 1. Block diagram of the proposed system.

accuracy in a controlled environment. In order to imple-
ment the idea on off-the-shelf smartphone, we use a pair
of smartphones which collaborate in imaging and illumi-
nating functionalities. Slave smartphone projects illumi-
nation from different position and takes images simultane-
ously, while master smartphone captures the input images.
Given an illumination, SURF features in the images cap-
tured by master and slave are matched simultaneously to
find the relative pose between them. Then, using conven-
tional procedure of photometric stereo, we reconstruct sur-
face normal map and consequently 3D surface by solving
the Poisson equation. To the best of our knowledge, the
proposed system is the first one which uses smartphone’s
camera and flash cooperatively to capture the 3D geometry
of the scene. Figure 1 shows the overall block diagram of
the proposed system.

This paper is organized as follows. In Section 2, we
briefly introduce photometric stereo technique. Section 3
describes the camera calibration and segmentation for im-
age preprocessing. In Section 4, we describe the proposed
method used to estimate relative pose between smartphones.
Experimental results are shown in Section 5. Finally, we
give a conclusive remark in Section 6.

2. Photometric Stereo

2.1. Basic Formulation

Photometric stereo technique observes illuminated 3D
scene from different lighting condition (at least 3) and es-
timates the surface normal based on surface reflectance
model [14]. It is assumed that the scene has Lambertian
surface without specular reflection. The image pixel inten-
sity I is computed as follows.

I = ρn · s (1)

where ρ, n, and s denote albedo, surface normal vector,
(known) lighting direction vector, respectively.

In order to make Eq. (1) a well-posed problem, multiple
images with different lighting direction are commonly used.
Then Eq. (1) becomes an overdetermined system of linear

equation as follows.I1
...
IN

 = ρn ·

S1

...
SN

 (2)

Pixel’s albedo ρ and surface normal n can be computed
by solving Eq. (2) in least square sense. This procedure is
repeated for every pixel position.

2.2. Photometric Stereo Using Smartphone

In our approach, we utilize smartphone’s camera and
flash as the image acquisition and the light source. A pair
of smartphones, i.e. master and slave, collaborates together
to capture images at fixed location (of the master) and to
illuminate the scene from different locations (of the slave).
The master performs the main computation of photometric
stereo.

In photometric stereo, each lighting direction should be
known in advance. In order to achieve this in the proposed
system, the slave also captures the image while projecting
the illumination. Robust feature (SURF [2]) detection is
performed on both images, which are matched and then re-
fined by RANSAC [5]. Given the initial matching of SURF
feature, five-point algorithm [9] is employed to estimate the
relative pose between master and slave. Note that the dis-
tance between camera and flash of slave (2∼3cm) is negli-
gible compared with the distance to the scene. Therefore, in
the proposed system, it is assumed that the location of the
slave’s camera and flash is identical.

After estimating the lighting direction vectors of differ-
ent illumination location, surface normal is calculated by
evaluating Eq. (2). Among a few existing methods of re-
covering depth map from surface normal map, we use the
successive over-relaxation solver [4]. Note that it leads to
fast convergence by slightly sacrificing the accuracy.

3. Image Preprocessing
3.1. Camera Calibration

Geometric and radiometric distortion of smartphone’s
imaging system often degrades the accuracy of recon-
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Figure 2. Camera response function of R,G,B channel

structed 3D shape. Geometric (tangential and radial) dis-
tortion due to the small lens with short focal length is easily
calibrated by performing camera calibration using Camera
Calibration Toolbox [3].

On the other hand, radiometric distortion caused by non-
linear sensor response invokes a nontrivial problem since it
distorts the observed radiance of scene reflection. Therefore
Ii in Eq. (2) remains erroneous if the distortion is not cor-
rected. In our approach, Robertson’s HDRI (high dynamic
range imaging) method is employed, which uses multiple
images with different exposure to estimate the camera re-
sponse function [11]. Figure 2 shows the estimated cam-
era response function of the smartphone’s camera used in
our implementation. By taking the inverse of the camera
response function, pixel intensity becomes linearly propor-
tional to the observed radiance.

Note that both geometric and radiometric calibration are
performed only once in offline processing, which causes no
additional burden in on-the-fly computation.

3.2. Foreground/Background Segmentation

In this paper, we focus on 3D shape acquisition of an
object of interest. It leads to additional computation and
memory consumption if the background pixels are not fil-
tered. Therefore, it is necessary to segment the foreground
object from the background.

In our approach, we employ GrabCut [12] method which
is an interactive segmentation method. First, user specifies
the bounding rectangle around the object to reduce the do-
main as shown in Figure 3(a). Then, GrabCut gives the ini-
tial segmentation (Figure 3(b)). The incorrect initial seg-
mentation is refined by providing user strokes on the fore-
ground (Figure 3(c)) and running GrabCut iteratively. The
final result is shown in Figure 3(d).

(a) (b)

(c) (d)

Figure 3. Foreground/background segmentation for the object of
interest. (a) Initial user input by specifying a bounding rectangle.
(b) Initial segmentation result. (c) Further user input by putting
strokes on the foreground. (d) Final segmentation result.

4. Relative Pose Estimation of Smartphones
In order to solve Eq. (2), light direction vectors Si should

be identified in advance. Illumination direction of the slave
can be obtained by estimating relative pose between the
master and slave smartphones.

4.1. Feature Extraction and Matching

In our approach, pose estimation is performed by extract-
ing and matching SURF features [2] of the images from
master and slave. While the slave projects illumination, it
also captures the image and computes SURF descriptors.
All processes on the slave are triggered by the master’s com-
mand. The SURF descriptors are transferred to the master
through Bluetooth communication. In SURF descriptors’
matching, conventional RANSAC is applied to remove out-
liers. Figure 4(a) shows the matching result of SURF de-
scriptors after applying RANSAC.

4.2. Pose Estimation

The relative pose between the master and the slave, i.e.
camera and light source, is computed by employing five-
point algorithm [9]. The output of five-point algorithm is
the essential matrix of images from master and slave. First,
five matched feature points are selected randomly and five-
point algorithm is executed to find the possible candidates
of essential matrix. Among the candidates (usually 1∼10),
one of them with minimum estimation error is selected as
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(a)

(b)

Figure 4. Initial matching of feature points. (a) Initial SURF
matching. (b) After applying RANSAC and five-point algorithm
(Inlier matching is marked in green).

the best candidate of the given five points. Before evaluating
the estimation error of a particular candidate Ei , the outlier
features are removed by computing the matching error and
testing if the error is smaller than a threshold τ (which is 5
in our implementation) as follows.

qT
2 K

−T
2 EiK

−1
1 q1 < τ (3)

where q1 and q2 are the location of the corresponding fea-
ture points in master and slave images. K1 and K2 denote
the intrinsic matrix of the master and slave camera, respec-
tively. If the feature point pair q1 and q2 passes the test,
they are selected as inlier. The correspondence of the se-
lected inliers are marked as green in Figure 4 (b). Then
the cumulative error εi is computed for all inlier points as
follows.

εi =
n∑

k=1

qT
2,kK

−T
2 EiK

−1
1 q1,k (4)

where n is the number of inlier points. The candidate E
with the minimum cumulative error is selected as the best
essential matrix for the selected five points.

This procedure is repeated for as many five-point selec-
tions as possible, since outliers may exist in a selection. In
our implementation, we test 3,000 random selections of five
points. The final essential matrix with the minimum cumu-
lative error is selected as the best one of all different selec-
tions.

Finally, the obtained essential matrix E is decomposed
into the multiplication of rotation matrix R and translation
vector t(= (tx , tx , tx )

T) as follows. The decomposition is
done by using SVD (singular value decomposition).

E = RS

Figure 5. Experimental setup.

Steps Execution Time Image Resolution
Segmentation 3.4

640×480
Feature Extraction 5.0
Feature Matching 1.4
Pose Estimation 14.7
Normal Map 1.0

320×240
Depth Map 1.4
Total 26.7

Table 1. Execution time (in seconds).

where, S =

 0 −tz ty
tz 0 −tx
−ty tx 0

 (5)

5. Experimental Result
Figure 5 shows the experimental setup of the proposed

system. The proposed algorithm is implemented on Sam-
sung SHW-M250S (Galaxy SII) smartphone which equips
with 1.2GHz dual core CPU (ARM Cortex A9) and 8M-
pixel camera with an LED flash. The algorithm is imple-
mented by C language and JNI (Java Native Interface) us-
ing Android NDK on Android 2.3. Although there are many
floating point operations, we do not implement fixed-point
computation since ARMv7-architecture supports hardware
FPU (floating point unit) in Cortex A9 CPU core.

In our experiment, we use ten input images to recover the
normal more accurately. The input images have 640×480
resolutions. The resolution of normal map and depth map
are decimated to half (320×240) to save the running time.

5.1. Result and Discussion

Figure 6 shows the examples of reconstructed 3D shape
for different scenes. It shows that the proposed method pro-
duces the normal (Figure 6(b)) and depth map (Figure 6(c))
almost correctly. Note that some degradation like shape
bending still exists as observed in Figure 6(d), of which rea-
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(a)

(b)

(c)

(d)

Figure 6. Reconstructed 3D shape. (a) Input images. Ten images are used as input. Four of them are shown here. (b) Estimated normal
map. (c) Reconstructed depth image. (d) 3D polygon model rendered on the smartphone.
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son is summarized as follows. First, on the contrary to the
common assumption, the direction of flash light is not paral-
lel, because the distance between the smartphone flash and
the object should be close enough. Secondly, the flash light
intensity is not uniform in all direction. Thirdly, the camera
vignetting effect is not calibrated perfectly by the smart-
phone’s image signal processor (ISP). Nevertheless, the re-
sult proves reasonable possibility of 3D shape acquisition
using smartphone’s camera and flash. The quality of recon-
structed 3D shape is better and denser than the conventional
binocular stereo or shape from motion techniques.

Table 1 shows the execution time measured for the test
scene shown in the first column of Figure 6. In order to
reduce the computational burden in feature extraction and
matching, the maximum number of SURF features is lim-
ited to 300. In depth map estimation from normal map, we
apply the successive over-relaxation solver instead of com-
plex method such as conjugate gradient solver. This method
not only provides comparable result but also is three times
faster than the conjugate gradient solver.

5.2. Limitation

The proposed algorithm has a few limitations which are
mainly due to the hardware incapability of the smartphone.
First, the flash light is not bright enough in common indoor
environment. Therefore, the proposed system requires the
ambient illumination to be very dim or eventually turned
off. This can be overcome by using brighter flash. Sec-
ondly, the current execution time may not be fast enough,
while it can be further improved by applying more intensive
optimization techniques. The execution time can be much
faster than the current one by using parallel computation on
mobile GPU. Last, the user interface is uncomfortable due
to the small screen size. Despite of these limitations, we be-
lieve the proposed system opens the possibility of 3D shape
capture by common users using smartphone.

6. Conclusion
In this paper, we proposed an active 3D shape recon-

struction method using a pair of smartphones. The proposed
method recovered 3D shape successfully by customizing
photometric stereo on the smartphone’s environment. The
proposed system is the first one which uses smartphone’s
camera and flash cooperatively to capture 3D shape. In fu-
ture work, we expect to increase the accuracy by combining
stereo matching and photometric stereo.
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