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Abstract

We present an framework to detect and localize activi-
ties in unconstrained real-life video sequences. This is a
more challenging problem as it subsumes the activity clas-
sification problem and also requires us to work with uncon-
strained videos. To obtain real-life data, we have focused
on using the Human Motion Database (HMDB), a collec-
tion of realistic video clips. The detection and localization
paradigm we introduce uses a keyword model for detecting
key activities or gestures in a video sequence. This pro-
cess is analogous to the use of keyword or key-phrase de-
tection in speech processing. The method learns models
for the activities-of-interest during training, so that when
presented with a network of activities (a representation of
video sequences) at testing, the goal is to detect the key-
words in the network. Our approach for classification out-
performed all the current state-of-the-art classifiers when
tested on two publicly available datasets, KTH and HMDB.
We also tested this paradigm for spotting gestures via a one-
shot-learning approach on the CHALEARN gesture dataset
and obtained very promising results. Our approach was
ranked amongst the top-5 best performing techniques in the
CHALEARN 2012 gesture spotting competition.

1. Introduction

Activity recognition: given a sequence of images with
one or more persons performing one or many different ac-
tivities over time, can a system be designed to fully auto-
matically recognize what activity is being performed in the
sequence and in what specific frames it occurred? (defini-
tion adapted from Turuga et al. [21])

Till date, much of the computer vision community has
approached this problem from a single activity perspective
where the problem is reduced to classifying a sequence of
images containing one activity. Hence given an image se-
quence, the assumption already exists that only one major
activity from a known class of activities occurs in that se-

quence. In addressing this problem, other sub-problems that
have emerged include i) investigating the effectiveness of
different types of spatiotemporal features involved in classi-
fying activities; (ii) unsupervised monitoring and anomaly
detection of scenes such as traffic monitoring or crowded
site monitoring; (iii) investigating the effectiveness of sta-
tistical models for classifying activities.

Although this problem in itself is still an open and chal-
lenging area of research, in our proposed work, we remove
the simplifying assumption that only one activity type ex-
ists in an image sequence. Hence, given an image sequence
containing many different activities, our goal is to deter-
mine whether or not one or more activities (from a known
class of activities) occurs in that sequence, and to localize
exactly where it occurs. This is a much more challenging
and realistic problem than the current state-of-the-art ap-
proaches to activity recognition since it subsumes at least
two of the current activity recognition sub-problems. In ad-
dition, we develop a framework for intelligently and effec-
tively spotting known activities from a random sequence of
activities (known and/or unknown).

The key challenges in activity spotting in general are
two-fold (i) the search space for locating activities in uncon-
strained videos can be very large, increasing with increase
in video length; and (ii) human actions/activities can exhibit
tremendous variations within a single activity class, i.e. the
same type of activity can be viewed differently because of
variations in appearances, view points, lighting conditions,
extent of motion, etc.

To overcome some of these challenges, we propose a
new statistical model for activity classification and an effi-
cient framework for spotting on video sequences containing
zero or more of the activities learned by that model. We rep-
resent an activity as a temporal sequence of discretized mo-
tions, governed by the Markov assumption, and develop a
hierarchical model where the discretized motions are mod-
eled as distributions over observations. We evaluate the
performances of both the classification and spotting tasks
on publicly available datasets (KTH [19], HMDB [13]) and
CHALEARN gesture dataset.
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2. Related Work
Features and interest points

Extensive research has gone into the study of the recog-
nition of human activities in videos [1]. The study can
be grouped into two main categories (i) spatio-temporal
feature extraction; and (ii) model representation. Spatio-
temporal interest points were earlier introduced by Laptev
and Linde [14] and since then other interest-point-based de-
tectors such as those based on spatio-temporal Hessian ma-
trix [26] and Gabor filters [3, 6] have been proposed. Var-
ious other descriptors such as those based on HoG/HoF)
[15], HoG3D [11], 3D-SIFT [20] and Local Trinary Pat-
terns [28] have also been proposed to describe interest
points. More recently descriptors based on tracking inter-
est points have been explored [17, 16]; these use standard
KLT trackers1 to track interest points. In a recent paper
by Wang et al. [23], the authors performed an evaluation
of local spatio-temporal features for action recognition and
showed that dense sampling of feature points significantly
improved classification results compared to sparse interest
points. Similar results were also shown by [18] for image
classification.

Statistical models and activity spotting

Graphical models are extensively used for activity recog-
nition. For example, Topic Modeling or Latent Dirichlet
Allocation (LDA) [2] has been used to cluster low level fea-
tures from videos into activities [25, 27, 24, 10]. The use
of topic modeling in activity recognition aims to automati-
cally discover “topics” which are co-occurrences of “visual
words” or bags-of-activity-descriptors. These visual words
are then clustered into “documents” or pre-defined activ-
ity classes. One drawback of strictly the LDA-based ap-
proaches is the absence of temporal modeling, i.e. restrict-
ing the modeling of the correlation of different motion pat-
terns over time.

Gaur et al. [7] proposed a model based on a string rep-
resentation of the video. The string represented the spatio-
temporal ordering of interest points. Brendel et al. [4] pro-
posed a model to represent videos by spatiotemporal graphs,
where the nodes corresponded to multiscale video segments
and edges captured hierarchical, temporal and spatial rela-
tionships.

Few methods have been proposed for activity spotting
and among them include the work of Yuan et al. [29]
who represented a video as a 3D volume and activities-of-
interest as subvolumes. The task of activity spotting was
therefore reduced to one of performing an optimal search
for activities in the video. Another work in spotting was
presented by Derpanis et al. [5] who introduced a local de-
scriptor of video dynamics based on visual spacetime ori-

1Kanade-Lucas-Tomasi Feature Tracker

ented energy measures. Similar to the previous work, their
input was also a video which was search for a specific ac-
tion. The limitation in these techniques is their inability
to adapt to changes in view points, scale, appearance etc.
Rather than being defined on the motions patterns involved
in an activity, these methods performed a somewhat tem-
plate matching type of technique and such methods do not
readily generalize to new environments exhibiting a known
activity. Both methods report their results on the KTH and
CMU datasets.

3. Proposed Approach
In this section, we present an overview of our end-to-

end framework describing how we train the model and then
perform classification and spotting tasks. Figure 1 shows
a high level process flow for how the temporal model is is
learned. As shown, a probabilistic dynamic signature is cre-
ated for every activity class to be learned and activity recog-
nition becomes a problem of finding the most likely distri-
bution to generate the test video. Activity spotting becomes
a problem of decoding a network of combined signatures
(as shown in Figure 3) to determine which component of
the network could have generated a particular activity class.
Additional details on the decoding process are provided in
Section 3.2.

3.1. Generating a signature for an activity class

3.1.1 Computing the observables for the model

The first step in computing the probabilistic signature for an
activity class involves the extraction of interest points from
the frames (sampled from the videos at 30 fps) of the train-
ing videos containing only that activity. Because each frame
can contain a large number of redundant points which have
no bearing to the activity being learned, interest points are
used for pruning. The specific methods for extracting inter-
est points on the different datasets are provided in Section
4

Once the interest points are obtained, two key feature de-
scriptors the Histogram of Gradients (HoG) and Histogram
of Flow (HoF)[15] are implemented to obtain a dense pop-
ulation of descriptors over the entire space of activities.
Using k-means clustering, the descriptors are converted to
“visual words” or bags-of-activity-descriptors. If a frame
is analogous to a document, the goal of the LDA process
here is to to automatically discover the “topics” which are
co-occurrences of the visual words. The visual words are
thus re-expressed in terms of topics so that after LDA, each
frame can be seen to be made up of visual words which be-
long to different topics.

Unlike the previous approaches where the clustering
techniques such as LDA do away with the temporal as-
pect of the problem, our approach only uses LDA to reduce
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Figure 1. Process flow for the training cycle

the size and refine the meaning of our observable features.
By explicitly applying a temporal model over these observ-
ables, we can still successfully model the correlation of dif-
ferent motion patterns over time. The observable feature for
one frame is therefore the histogram over the visual words
in that frame.

3.1.2 Computing the parameters for the model

Dense 

motion(t-1)

Activity

Dense 

motion(t)

Figure 2. Graphical
Model

In a general sense, our model
can be interpreted as Hidden
Markov Model (HMM) with
states and observations but
unlike classic HMM, this
model has multiple chan-
nels/descriptors, where each
channel is represented as a
distribution over the visual
words corresponding to that
channel. In contrast to the
classic HMM, our model can
have multiple observations per

state and channel. We refer to this model as mcHMM
(multiple channel HMM). Figure 2 shows a graphical
representation of the mcHMM. We choose to separate the
HoG channel from the HoF channel because they capture
very different spatiotemporal properties from the video
input. In our mcHMM, we refer to the states of the HMM
as dense motions.

Hence, to determine the probabilistic signature of an ac-
tivity class, one mcHMM is trained for each activity. The
generative process for mcHMM can be given as follows: (i)
dense motion is sampled from an activity based on the tran-
sition matrix for that activity; (ii) a frame-feature (compris-
ing of the distribution of visual words) is sampled according
to a multinomial distribution for that dense motion2. 3) Re-
peat this for each frame. Similar to a classic HMM, the

2dense motions are modeled as multinomials since our input observ-
ables are discrete

parameters for the mcHMM are therefore:

1. Initial state distribution π = {πi}
2. State transition probability distribution A = {aij}
3. Observation densities for each state and descriptor
B = {bdi }

The joint probability distribution of observations (O) and
hidden state sequence (Q) given the parameters of the multi-
nomial representing a hidden state (λ) can be expressed as:

P (O,Q|λ) = πq1bq1(O1)

T∏
t=2

aqt−1qt · bqt(Ot) (1)

where bqt(Ot) is modeled as follows

bqt(Ot) =
∏D

d=1 b
d
q(O

d
t )

=
∏D

d=1Mult(Od
t |bdq) (2)

and D is the number of descriptors.
Expectation-Maximization (EM) is implemented to find

the maximum likelihood estimates. The update equations
for the model parameters are:

π̂ =
R∑

r=1

γr1(i); (3)

âij =

∑R
r=1

∑T
t=1 η

r
t (i, j)∑R

r=1

∑T
t=1 γ

r
t (i)

(4)

b̂dj (k) =

∑R
r=1

∑T
t=1 γ

r
t (j) ·

nd,k
t

nd,.
t∑R

r=1

∑T
t=1 γ

r
t (j)

(5)

where R is number of videos and γ1(i) is the expected
number of times the activity being modeled started with
dense motion i;
ηrt (i, j) is the expected number of transitions from dense

motion i to dense motion j and γrt (i) is the expected number
of transitions from dense motion i;
nd,kt is the number of times that visual word k occurred

in descriptor d at time t and nd,.t is the total number of visual
words that occurred in descriptor d at time t.

45



Activity 1

s e

S’

…

Activity k

s e

S’

Activity 1

…s e

Activity 2

s e

S’’

…

Activity k

s e

e’

s

Activity 2

… e

Figure 3. Activity spotting by computing likelihoods via Viterbi decoding. The toy example shown assumes there are only two activities
in any test video, where the first activity is from the yellow set, followed by one from the blue set. The image also shows an example of a
putative decision path in red, after the decoding is completed (image best viewed in color)

3.2. Activity recognition and activity (gesture) spot-
ting

The activity recognition problem is thus reduced to an in-
ference problem where given a new previously unseen test
video, and the model parameters or probabilistic signatures
of known activity classes, the goal is establish which activ-
ity class distribution most likely generated the test video.
This type of inference can be achieved using the Viterbi al-
gorithm.

Figure 3 shows an example of the stacked mcHMMs in-
volved the activity spotting task. Our current method of
activity spotting using the probabilistic signature for an ac-
tivity class requires that the number of activities in the test
videos are the same and are known in advance. So in the toy
example shown, a test video is comprised of two activities
only. (This design choice was driven by our participation in
the Chalearn competition where the number of activities in
every test video was given to be 5). Although this is cur-
rently a limitation, the process can extended by implement-
ing a more general infinite network structure where in figure
3, there would be a feedback arrow from the final state e′ to
the intermittent start state s′′.

Again, the Viterbi decoding algorithm is implemented to
traverse the stacked network. Putative decisions arise when
the Viterbi path crosses the keyword portion of the model.
The ratio between the likelihood of the Viterbi path that
passed through the keyword model and the likelihood of an
alternate path that passes solely through the non-keyword
portion is then used to score the occurrence of a keyword,
where a keyword here refers to an activity class. An empiri-
cally chosen threshold value is used to select the occurrence
of a keyword in the signal being decoded.

4. Implementation

In this section, we describe the details of implementing
our proposed approach on several publicly available bench-

mark datasets.

4.1. Interest points and features

Depending on the task as hand, the source and size of the
training set can vary extensively. For example, for perform-
ing the classification task on KTH, the dataset comprised of
about 2300 video clips used to train/test six activities. For
HMDB, a significantly more complex and diverse dataset,
there were 7000 video clips to train/test 51 complex activ-
ities. For the Chalearns dataset, since the task-at-hand was
spotting via one-shot learning, only one video per class is
provided to train an activity (or gesture as the dataset orga-
nizers referred to them).

Interest points were obtained in the KTH and HMDB
dataset in a similar manner by sampling dense points in ev-
ery frame in the video and then track these points for the
next L frames. For each of these tracks, motion boundary
histogram descriptors based on the HoG and HoF descrip-
tors were extracted. Because the HMDB dataset comprises
of real-life scenes which contain people and activities oc-
curring at multiple scales, the frame-size in the video was
reduced by a factor of 2 repeatedly and motion boundary
descriptors were extracted at multiple scales.

Figure 4. Interest points (shown in red) for 2 consecutive frames
from the Chalearn dataset

In the Chalearn dataset, since the videos were comprised
of RGB-D images, we extracted interest points by taking the
difference between two consecutive depth images. Figure
shows an example of two consecutive depth images from
the dataset, with the interest points superimposed. HoG and
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HoF descriptors were then extracted at each interest point
so that similar descriptors could be obtained as those from
the KTH and HMDB datasets. For HoG and HoF imple-
mentation, we used a spatial size of 32x32 and 4 cells of
size 16x16.

Next, the feature descriptors were clustered to obtain the
first round of visual words. In general, from the literature,
in order to limit complexity, researchers randomly select a
finite number (roughly in the order of 100,000) of train-
ing features which could prove reasonable for sparse fea-
tures and small datasets. In dealing with dense features,
the amount of descriptors generated at multiple frames
was significantly more. For example, if there are 2000
videos for one activity and for each video there are about
15,000 feature descriptors on average, resulting in a total
of 30,000,000 features (for one scale only). Randomly se-
lecting say 100,000 or 0.3% of the data as the dimension of
the resulting visual words would not have sufficiently rep-
resented such a large space.

To attenuate this issue, we divide the construction of vi-
sual words into a two step process where we first construct
visual words for each activity class separately in parallel.
Then we use the visual words obtained for each class as the
input samples to cluster the final visual words. This process
significantly reduces the amount of data to be eventually
presented to the model.

5. Experiments and Results

In this section we present (i) the results obtained from
performing activity classification on video sequences cre-
ated from the Human Motion Database (HMDB) [13] and
KTH database; and (ii) we also present results of ges-
ture spotting from the CHALEARN gesture dataset [8].
The CHALEARN gesture dataset has both depth and RGB
videos, the task is to perform one short learning, which is
the main challenge of this dataset. The HMDB is currently
the most realistic test video database for activity recogni-
tion, while KTH is somewhat representative of the ceiling
dataset in activity recognition (more recent papers achieve
close to 100% activity classification due to the simplicity
of the data). By testing on the two extreme benchmark
datasets, we show that our classification framework com-
petes well with the current state-of-the-art activity classifi-
cation techniques.

5.1. Activity Classification Results

In order to compare our framework to the other current
state-of-the-art methods, we ran the standard activity clas-
sification test on both the KTH and HMDB test sequences.
Table 1 shows the comparison of accuracies obtained. Our
best accuracy on the KTH dataset was obtained using 2000
visual words and 25 states.

Method Accuracy
Laptev et al. [15] 91.8%
Yuan et al. [29] 93.3%
Wang et al. [22] 94.2%
Gilbert et al. [9] 94.5%

Kovashka and Grauman [12] 94.53%
Our Method 94.67

Table 1. Comparison of our proposed model and features with
state-of-the-art activity classification methods for KTH dataset

Similarly, we performed activity classification tests on
all 51 categories of the HMDB and the results are shown
in Table 2. We outperform the only currently reported ac-
curacy results on this dataset. Rows 1-3 show accuracies
for testing performed on the stabilized version of the data.
When tested on 10 activities stableand unstable, the results
were 66.67 % and 57.67 % respectively. Our best accuracy
on the HMDB was obtained using 1000 visual words and
25 states.

Method Accuracy
Best results on 51 activities

by Kuehne et al. [13] 23.18%
Best results on 10 activities

by Kuehne et al. [13] 54.3%
Our best results on 51 activities 25.64%
Our best results on 10 activities 66.67%

Our best results on 10 activities (original) 57.67%
Table 2. Comparison of our proposed model and features with
state-of-the-art activity classification methods for HMDB dataset

5.2. One-Shot-Learning using Chalearn dataset

Details on the dataset and how it can be used can be
found in [8]. We performed one-shot-learning using our
proposed model where a model was learned for every ges-
ture (every training video). For gesture spotting, a network
of gestures was created by connecting models of each ges-
tures learned. We used edit distance to evaluate our per-
formance. Table 3 shows the results of one-shot-learning.
We placed fourth in the final results of the Chalearn 2012
gesture challenge using this method.

Method Dataset edit distance
Ours Development 0.26336

Ours + LDA Development 0.2409
Ours Validation 0.26036

Ours + LDA Validation 0.23328
baseline Validation 0.59978

Top Ranking Participant Validation 0.1426
Table 3. Results for Chalearn gesture dataset
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6. Conclusion and future work
We have presented an end-to-end temporal Bayesian

framework for activity classification and spotting. Our
framework competes well with the current state-of-the-art
techniques in activity classification and verify this by test-
ing on the two extreme datasets the trivial KTH, and the
very complex realistic HMDB. We also show the efficacy
of our model by participating in Chalearn gesture challenge
and finished top-5 in the competition.

In the future, we intend to perform a more rigorous study
of the proposed method of activity spotting by varying the
threshold score at which a keyword is acknowledged. An
ROC curve can be developed in order to select optimal
thresholds values.
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